This PBS video shows how Klaus Lackner, a geophysicist at Columbia University, is trying to tackle the problem of rising atmospheric CO2 levels by using an idea inspired by his daughter's 8th-grade science fair project.

This activity includes an assessment, analysis, and action tool that can be used by classrooms to promote understanding of how the complex current issues of energy, pollution, supply, and consumption are not just global but also local issues.

This video highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs.

This interactive addresses the question if we can reduce CO2 emissions by 20% of 1990 levels and help avoid dangerous climate change? Users of this interactive can manipulate changes to various sources and uses (supply and demand) of energy with the goal of reducing C02 emissions in Great Britain by 80% in the year 2050.

In this activity, students become familiar with the online Renewable Energy Living Lab interface and access its real-world solar energy data to evaluate the potential for solar generation in various U.S. locations.

One of a suite of online climate interactive simulations, this Greenhouse Gas Simulator uses the bathtub model to demonstrate how atmospheric concentrations of CO2 will continue to rise unless they are lowered to match the amount of CO2 that can be removed through natural processes.

An attractive concept/mind map that illustrates various human strategies for responding to climate change. It was developed by a psychologist and not by an educator or scientist but can be used to inspire discussion and artistic representations of the human dimension to climate and energy issues.

In this activity, students consider the impact and sustainability of use of different classes of biofuels on the economy, the environment, and society. Students also learn about bioelectricity and how converting biomass to electricity may be the more efficient way to fuel cars in the 21st century.

In this activity students make biodiesel from waste vegetable oil and develop a presentation based on their lab experience. Parts of the activity include creation of bio-diesel from clean vegetable oil, creation of bio-diesel from waste vegetable oil, chemical analysis of biodiesel, purification of biodiesel, and creation of soap from glycerin.

In this activity, students play the role of energy consultants to a CEO, assessing and documenting the feasibility, cost, and environmental impact of installing solar power on 4 company facilities with the same design but in different geographical locations.