This animation depicts the carbon cycle in a fashion that is suited for younger audiences. The video discusses how carbon enters and exits the environment through both natural and human-driven ways.

In this activity, students explore the way that human activities have changed the way that carbon is distributed in Earth's atmosphere, lithosphere, biosphere and hydrosphere.

This activity from NOAA Earth System Research Laboratory introduces students to the scientific understanding of the greenhouse effect and the carbon cycle. The activity leads them through several interactive tasks to investigate recent trends in atmospheric carbon dioxide. Students analyze scientific data and use scientific reasoning to determine the causes responsible for these recent trends. By studying carbon cycle science in a visual and interactive manner, students can learn firsthand about the reasons behind our changing climate.

In this series of activities students investigate the effects of black carbon on snow and ice melt in the Arctic. The lesson begins with an activity that introduces students to the concept of thermal energy and how light and dark surfaces reflect and absorb radiant energy differently. To help quantify the relationship between carbon
and ice melt, the wet lab activity has students create ice samples both with and without black carbon and then compare how they respond to radiant energy while considering implications for the Arctic.

In this video, students see how data from the ice core record is used to help scientists predict the future of our climate. Video features ice cores extracted from the WAIS Divide, a research station on the West Antarctic Ice Sheet.

This set of activities is about carbon sources, sinks, and fluxes among them - both with and without anthropogenic components.

This video illustrates how atmospheric particles, or aerosols (such as black carbon, sulfates, dust, fog), can affect the energy balance of Earth regionally, and the implications for surface temperature warming and cooling.

This activity describes the flow of carbon in the environment and focuses on how much carbon is stored in trees. It goes on to have students analyze data and make calculations about the amount of carbon stored in a set of trees at three sites in a wooded area that were to be cut down to build a college dormitory.

This narrated slide presentation shows the carbon cycle. It looks at various parts of this biogeochemical sequence by examining carbon reservoirs and how carbon is exchanged among them.

This short cartoon video uses a simple baseball analogy (steroid use increases probability of hitting home runs) to explain how small increases in greenhouse gases can cause global temperature changes and increase the probability of extreme weather events.

Pages