This set of activities is about carbon sources, sinks, and fluxes among them - both with and without anthropogenic components.

This is an interactive website that provides descriptive information and data related to ten key climate indicators. These climate indicators and related resources show global patterns and data that are intuitive and compelling teaching tools.

In this video, a team of paleontologists, paleobotanists, soil scientists, and other researchers take to the field in Wyoming's Bighorn Basin to document how the climate, plants, and animals there changed during the Paleocene- Eocene Thermal Maximum (PETM) when a sudden, enormous influx of carbon flooded the ocean and atmosphere for reasons that are still unclear to scientists. The PTEM is used as an analog to the current warming occurring. The scientists' research may help inform our understanding of current increases in carbon in the atmosphere and ocean and the resulting impact on ecosystems. Supporting materials include essay and interactive overview of animals that existed in the Basin after the PETM event.

In this activity, students work with climate data from the tropical Pacific Ocean to understand how sea-surface temperature and atmospheric pressure affect precipitation in the tropical Pacific in a case study format.

This lab exercise is designed to provide a basic understanding of a real-world scientific investigation. Learners are introduced to the concept of tropospheric ozone as an air pollutant due to human activities and burning of fossil fuels. Students analyze and visualize data to investigate this air pollution and climate change problem, determine the season in which it commonly occurs, and communicate the results.

This long classroom activity introduces students to a climate modeling software. Students visualize how temperature and snow coverage might change over the next 100 years. They run a 'climate simulation' to establish a baseline for comparison, do a 'experimental' simulation and compare the results. Students will then choose a region of their own interest to explore and compare the results with those documented in the IPCC impact reports. Students will gain a greater understanding and appreciation of the process and power of climate modeling.

In this hands-on activity, students will learn about dendrochronology (the study of tree rings to understand ecological conditions in the recent past) and come up with conclusions as to what possible climatic conditions might affect tree growth in their region. Students determine the average age of the trees in their schoolyard, investigate any years of poor growth, and draw conclusions about the reasons for those years.

In this video segment, two students discuss the greenhouse effect and visit with research scientists at Biosphere 2 in Arizona, who research the effects of global climate change on organisms in a controlled facility. Their current research (as of 2002) focuses on the response to increased quantities of CO2 in a number of different model ecosystems.

This interactive visualization depicts sea surface temperatures (SST) and SST anomalies from 1885 to 2007. Learn all about SST and why SST data are highly valuable to ocean and atmospheric scientists. Understand the difference between what actual SST readings can reveal about local weather conditions and how variations from normalâcalled anomaliesâcan help scientists identify warming and cooling trends and make predictions about the effects of global climate change. Discover the relationships between SST and marine life, sea ice formation, local and global weather events, and sea level.

In this short video from ClimateCentral, host Jessica Harrop explains what evidence scientists have for claiming that recent global warming is caused by humans and is not just part of a natural cycle.

Pages