A detailed Google Earth tour of glacier change over the last 50 years introduces this topic in an engaging way. Students are then asked to select from a group of glaciers and create their own Google Earth tour exploring key characteristics and visible changes in that glacier.

This lesson sequence guides students to learn about the geography and the unique characteristics of the Arctic, including vegetation, and people who live there. Students use Google Earth to explore the Arctic and learn about meteorological observations in the Arctic, including collecting their own data in hands-on experiments. This is the first part of a three-part curriculum about Arctic climate.

In this activity, students examine climate variability in the North Atlantic associated with the North Atlantic Oscillation (NOA) in a case study format.

In this activity, students are guided through the process of locating and graphing web-based environmental data that has been collected by GLOBE Program participants using actual data collected by students in Pennsylvania and comparing them to their local climatic boundary conditions. This activity highlights the opportunities for using GLOBE data to introduce basic concepts of Earth system science.

In this activity students download satellite images displaying land surface temperature, snow cover, and reflected short wave radiation data from the NASA Earth Observation (NEO) Web site. They then explore and animate these images using the free tool ImageJ and utilize the Web-based analysis tools built into NEO to observe, graph, and analyze the relationships among these three variables.

In this activity students work with real datasets to investigate a real situation regarding disappearing Arctic sea ice. The case study has students working side-by-side with a scientist from the National Snow and Ice Data Center and an Inuit community in Manitoba.

In this activity, students estimate the drop in sea level during glacial maxima, when ice and snow in high latitudes and altitudes resulted in lower sea levels. Students estimate the surface area of the world's oceans, use ice volume data to approximate how much sea levels dropped, and determine the sea-level rise that would occur if the remaining ice melted.

This activity uses two interactive simulations to illustrate climate change, 1) at the micro/molecular level - modeling the impact of increasing concentrations of greenhouse gases in the atmosphere on surface temperature and 2) at the macro level - modeling changes in glacier thickness and flow as a result of rising surface temperature.

In this activity, students use a spreadsheet to calculate the net carbon sequestration in a set of trees; they will utilize an allometric approach based upon parameters measured on the individual trees. They determine the species of trees in the set, measure trunk diameter at a particular height, and use the spreadsheet to calculate carbon content of the tree using forestry research data.

Data-centric activity where students explore the connections between an observable change in the cryosphere and its potential impact in the hydrosphere and atmosphere. Students analyze the melt extents on the Greenland ice sheet from 1992-2003. Students also learn about how scientists collect the data.