In this intermediate Excel activity, students import US Historical Climate Network mean temperature data into Excel from a station of their choice. They are then guided through the activity on how to use Excel for statistical calculations, graphing, and linear trend estimates. The activity assumes some familiarity with Excel and graphing in Excel.

This high-resolution narrated video shows levels and movements of CO2 globally through the course of a year.

In this activity, students work with climate data from the tropical Pacific Ocean to understand how sea-surface temperature and atmospheric pressure affect precipitation in the tropical Pacific in a case study format.

This teaching activity is an introduction to how ice cores from the cryosphere are used as indicators and record-keepers of climate change as well as how climate change will affect the cryosphere.

This interactive visualization describes how climatologists obtain and interpret evidence from the Greenland Ice Sheet in an effort to piece together a picture of Earth's distant climate history. Resource describes how glaciers form and how they can be used to collect ancient atmospheric data. The issues analyzed in the data collection are particularly good in showing how science is done in the field.

This video is part two of a seven-part National Academies series, Climate Change: Lines of Evidence. The video outlines, with the use of recent research and historical data, how we know that the Earth is warming.

In this activity, students review techniques used by scientists as they analyze a 50-year temperature time series dataset. The exercise helps students understand that data typically has considerable variability from year to year and to predict trends, one needs to consider long-term data.

In this video scientists discuss possible rates of sea level rise, storms and resulting damage, rising temperatures and melting ice, and their collective effects on ecosystems.

This video features University of Wisconsin-Madison researcher John Magnuson, who studies the ecology of freshwater systems. He explains the difference between weather and climate using data on ice cover from Lake Mendota in Madison, WI. Analysis of the data indicates a long-term trend that can be connected to climate change.

In this activity, students graph and analyze methane data, extracted from an ice core, to examine how atmospheric methane has changed over the past 109,000 years in a case study format. Calculating the rate of change of modern methane concentrations, they compare the radiative forcing of methane and carbon dioxide and make predictions about the future, based on what they have learned from the data and man's role in that future.

Pages