This is an activity designed to allow students who have been exposed to the El NiÃo-Southern Oscillation to analyze the La NiÃa mechanism and predict its outcomes in a case study format.

In this audio slideshow, an ecologist from the University of Florida describes the radiocarbon dating technique that scientists use to determine the amount of carbon within the permafrost of the Arctic tundra. Understanding the rate of carbon released as permafrost thaws is necessary to understand how this positive feedback mechanism is contributing to climate change that may further increase global surface temperatures.

Students investigate how much greenhouse gas (carbon dioxide and methane) their family releases into the atmosphere each year and relate it to climate change. To address this, students use the Environmental Protection Agency Personal Emissions Calculator to estimate their family's greenhouse gas emissions and to think about how their family could reduce those emissions.

This set of animations and interactive simulations from the Byrd Polar Research Center at Ohio State University helps students develop an understanding of models used to understand the Earth system. Students consider the types of data that need to be included in a climate model, looking at inputs, outputs, and variables. The animations show how data is calculated for grid cells and assembled into a comprehensive model.

This Flash-based simulation explores the relationship between carbon emissions and atmospheric carbon dioxide using two main displays: (1) graphs that show the level of human-generated CO2 emissions, CO2 removals, and the level of CO2 in the atmosphere, and (2) a bathtub animation that shows the same information as the graphs. The bathtub simulation illustrates the challenges of reducing greenhouse gas concentrations in the atmosphere.

This animated visualization was created for the planetarium film 'Dynamic Earth'. It illustrates the trail of energy that flows from atmospheric wind currents to ocean currents.

In this series of activities students investigate the effects of black carbon on snow and ice melt in the Arctic. The lesson begins with an activity that introduces students to the concept of thermal energy and how light and dark surfaces reflect and absorb radiant energy differently. To help quantify the relationship between carbon
and ice melt, the wet lab activity has students create ice samples both with and without black carbon and then compare how they respond to radiant energy while considering implications for the Arctic.

In this activity, students explore past examples of climate variability in three locations: the Peruvian and Bolivian Andes, Central America, and coastal Greenland, and consider differences between climate variability and climate change.

This video describes how the normal thousands-of-years-long balance of new ice creation and melting due to ocean currents has been disrupted recently by warmer ocean currents. As a result, glacier tongues that overhang the interface between ice and ocean are breaking off and falling into the ocean.

This activity from NOAA Earth System Research Laboratory introduces students to the scientific understanding of the greenhouse effect and the carbon cycle. The activity leads them through several interactive tasks to investigate recent trends in atmospheric carbon dioxide. Students analyze scientific data and use scientific reasoning to determine the causes responsible for these recent trends. By studying carbon cycle science in a visual and interactive manner, students can learn firsthand about the reasons behind our changing climate.

Pages