This video segment from 'Earth: The Operators' Manual' explores how we know that today's increased levels of CO2 are caused by humans burning fossil fuels and not by some natural process, such as volcanic out-gassing. Climate scientist Richard Alley provides a detailed step-by-step explanation that examines the physics and chemistry of different "flavors," or isotopes, of carbon in Earth's atmosphere.

In this activity, students explore the way that human activities have changed the way that carbon is distributed in Earth's atmosphere, lithosphere, biosphere and hydrosphere.

This is a figure from the 2007 IPCC Assessment Report 4 on atmospheric concentrations of carbon dioxide, methane and nitrous oxide over the last 10,000 years (large panels) and since 1750 (inset panels).

In this series of activities students investigate the effects of black carbon on snow and ice melt in the Arctic. The lesson begins with an activity that introduces students to the concept of thermal energy and how light and dark surfaces reflect and absorb radiant energy differently. To help quantify the relationship between carbon
and ice melt, the wet lab activity has students create ice samples both with and without black carbon and then compare how they respond to radiant energy while considering implications for the Arctic.

This NASA animation on land cover change zooms into Rondonia, Brazil. It starts with a Landsat satellite image taken in 1975 and dissolves into a second image of the same region taken in 2009 that illustrates a significant amount of land use change.

This is an interactive visualization of the Carbon Cycle, through short-term and long-term processes.

Video presents a broad overview of what (NASA) satellites can tell us about how climate change is affecting oceans.

This lesson explores the chemistry of some of the gases that affect Earth's climate. It is the 3rd in a series of 9 lessons from an online module entitled 'Visualizing and Understanding the Science of Climate Change'.

This video highlights research conducted at Woods Hole on how heat absorbed by the ocean and changes of ocean chemistry from human activities could lead to a tipping point for marine life and ecosystems. Includes ice bath experiment that models the tipping point of Arctic sea ice.

This activity describes the flow of carbon in the environment and focuses on how much carbon is stored in trees. It goes on to have students analyze data and make calculations about the amount of carbon stored in a set of trees at three sites in a wooded area that were to be cut down to build a college dormitory.

Pages