This 15-panel interactive from NOVA Online describes some of the factors (e.g., Earth's rotation and the sun's uneven heating of Earth's surface) contributing to the formation of the high-speed eastward flows of the jet streams, found near the top of the troposphere. These jet streams play a major role in guiding weather systems.

This engaging activity introduces students to the concept of albedo and how albedo relates to Earth's energy balance.

An applet about the Milankovitch cycle that relates temperature over the last 400,000 years to changes in the eccentricity, precession, and orbital tilt of Earth's orbit.

In this activity students learn how Earth's energy balance is regulating climate. This activity is lesson 4 in the nine-lesson module Visualizing and Understanding the Science of Climate Change.

This is an animated interactive simulation that illustrates differential solar heating on a surface in full sunlight versus in the shade.

This video provides a good overview of ice-albedo feedback. Albedo-Climate feedback is a positive feedback that builds student understanding of climate change.

This interactive contains four animated slides that introduce the greenhouse effect. An additional animation offers to 'explore more'.

In this worksheet-based activity, students review global visualizations of incoming sunlight and surface temperature and discuss seasonal change. Students use the visualizations to support inquiry on the differences in seasonal change in the Northern and Southern Hemispheres and how land and water absorb and release heat differently. The activity culminates in an argument about why one hemisphere experiences warmer summers although it receives less total solar energy.

This animated visualization of precession, eccentricity, and obliquity is simple and straightforward, provides text explanations, and is a good starting place for those new to Milankovitch cycles.

This image depicts a representative subset of the atmospheric processes related to aerosol lifecycles, cloud lifecycles, and aerosol-cloud-precipitation interactions that must be understood to improve future climate predictions.

Pages