This activity features video segments from a 2007 PBS program on solar energy. Students follow a seven-step invention process to design, build, and test a solar cooker that will pasteurize water. In addition, they are asked to describe how transmission, absorption, and reflection are used in a solar cooker to heat water and to evaluate what variables contribute to a successful cooker.

Students perform a lab to explore how the color of materials at the Earth's surface affect the amount of warming. Topics covered include developing a hypothesis, collecting data, and making interpretations to explain why dark colored materials become hotter.

This is a short NASA video on the water cycle. The video shows the importance of the water cycle to nearly every natural process on Earth and illustrates how tightly coupled the water cycle is to climate.

This introductory video covers the basic facts about how to keep residential and commercial roofs cool and why it is important to reducing the heat island effect and conserving energy.

This qualitative graphic illustrates the various factors that affect the amount of solar radiation hitting or being absorbed by Earth's surface such as aerosols, clouds, and albedo.

An interactive simulation of Earth's seasonal dynamics that includes the axial tilt and other aspects of Earth's annual cycle.

This is part of a larger lab from the University of Nebraska at Lincoln:

This lesson is a lab in which students use thermometers, white and dark paper, and lamps to measure differences in albedo between the light and dark materials. Connections are made to albedo in Antarctica.

This activity introduces students to the process of converting sunlight into electricity through the use of photovoltaics (solar cells). Students complete a reading passage with questions and an inquiry lab using small photovoltaic cells.

Student teams design and build solar water heating devices that mimic those used in residences to capture energy in the form of solar radiation and convert it to thermal energy. In this activity, students gain a better understanding of the three different types of heat transfer, each of which plays a role in the solar water heater design. Once the model devices are constructed, students perform efficiency calculations and compare designs.

Students investigate passive solar building design with a focus on heating. Insulation, window placement, thermal mass, surface colors, and site orientation are addressed in the background materials and design preparation. Students test their projects for thermal gains and losses during a simulated day and night then compare designs with other teams for suggestions for improvements.