This NOAA visualization video on YouTube shows the seasonal variations in sea surface temperatures and ice cover for the 22 years prior to 2007 based on data collected by NOAA polar-orbiting satellites (POES). El NiÃo and La NiÃa are easily identified, as are the trends in decreasing polar sea ice.

These animations depict the three major Milankovitch Cycles that impact global climate, visually demonstrating the definitions of eccentricity, obliquity, and precession, and their ranges of variation and timing on Earth.

An interactive visualization tool to examine geocentric seasonal and latitudinal variability in solar energy reaching Earth's surface.

An interactive simulation of Earth's seasonal dynamics that includes the axial tilt and other aspects of Earth's annual cycle.

This is part of a larger lab from the University of Nebraska at Lincoln:

Hands-on laboratory activity that allows students to investigate the effects of distance and angle on the input of solar radiation at Earth's surface, the role played by albedo, the heat capacity of land and water, and how these cause the seasons. Students predict radiative heating based on simple geometry and experiment to test their hypotheses.

An applet about the Milankovitch cycle that relates temperature over the last 400,000 years to changes in the eccentricity, precession, and orbital tilt of Earth's orbit.

In this worksheet-based activity, students review global visualizations of incoming sunlight and surface temperature and discuss seasonal change. Students use the visualizations to support inquiry on the differences in seasonal change in the Northern and Southern Hemispheres and how land and water absorb and release heat differently. The activity culminates in an argument about why one hemisphere experiences warmer summers although it receives less total solar energy.

This interactive activity, in applet form, guides students through the motion of the sun and how they relate to seasons.

This is a video overview of the history of climate science, with the goal of debunking the idea that in the 1970s, climate scientists were predicting global cooling.

In this classroom activity, students analyze visualizations and graphs that show the annual cycle of plant growth and decline. They explore patterns of annual change for the globe and several regions in each hemisphere that have different land cover and will match graphs that show annual green-up and green-down patterns with a specific land cover type.