This figure shows the various astronomic cycles that influence long-term global climate cycles (Milankovitch cycles), plotted on the same time scale for easy comparison.

This interactive visualization adapted from NASA and the U.S. Geological Survey illustrates the concept of albedo, which is the measure of how much solar radiation is reflected from Earth's surface.

An interactive simulation of Earth's seasonal dynamics that includes the axial tilt and other aspects of Earth's annual cycle.

This is part of a larger lab from the University of Nebraska at Lincoln: http://astro.unl.edu/naap/motion1/motion1.html

This is the first of nine lessons in the Visualizing and Understanding the Science of Climate Change website. This lesson is an introduction to Earth's climate and covers key principles regarding Earth's unique climate, atmosphere, and regional and temporal climate differences.

This classroom resource is a combination of 3 visualizations and accompanying text that illustrate how 3 key natural phenomena - cyclical changes in solar energy output, major volcanic eruptions over the last century, and El Nino/Nina cycles - are insufficient to explain recent global warming.

This introductory video summarizes the process of generating solar electricity from photovoltaic and concentrating (thermal) solar power technologies.

This lesson is a lab in which students use thermometers, white and dark paper, and lamps to measure differences in albedo between the light and dark materials. Connections are made to albedo in Antarctica.

In this video, students learn that scientific evidence strongly suggests that different regions on Earth do not respond equally to increased temperatures. Ice-covered regions appear to be particularly sensitive to even small changes in global temperature. This video segment adapted from NASA's Goddard Space Flight Center details how global warming may already be responsible for a significant reduction in glacial ice, which may in turn have significant consequences for the planet.

This activity features video segments from a 2007 PBS program on solar energy. Students follow a seven-step invention process to design, build, and test a solar cooker that will pasteurize water. In addition, they are asked to describe how transmission, absorption, and reflection are used in a solar cooker to heat water and to evaluate what variables contribute to a successful cooker.

This activity introduces students to the process of converting sunlight into electricity through the use of photovoltaics (solar cells). Students complete a reading passage with questions and an inquiry lab using small photovoltaic cells.

Pages