This is a multi-media teaching tool to learn about climate change. The tool is comprised of stills, video clips, graphic representations, and explanatory text about climate science. Acclaimed photographer James Balog and his Extreme Ice team put this teaching tool together.

Climate has varied in the past, but today's climate change rate is much more drastic due to human activity. Students explore past climate cycle graphs and compare the cycles with the current rate of change.

This high-resolution narrated video shows levels and movements of CO2 globally through the course of a year.

This video discusses impacts that the Eastern US is experiencing due to climate change. It describes the seasonal shifts that may affect tourism in New England, extreme heat in the Southeast, how rising sea level affects coastal areas, changes in hurricane intensity, the spread of invasive species and disease, as well as other topics.

In this audio slideshow, an ecologist from the University of Florida describes the radiocarbon dating technique that scientists use to determine the amount of carbon within the permafrost of the Arctic tundra. Understanding the rate of carbon released as permafrost thaws is necessary to understand how this positive feedback mechanism is contributing to climate change that may further increase global surface temperatures.

This set of activities is about carbon sources, sinks, and fluxes among them - both with and without anthropogenic components.

This site provides a useful set of graphical representations of mean temperature change in different land/ocean surfaces over the past 120+ years.

In this activity, students download historic temperature datasets and then graph and compare with different locations. As an extension, students can download and examine data sets for other sites to compare the variability of changes at different distinct locations, and it is at this stage where learning can be individualized and very meaningful.

In this activity, students analyze data maps of sea surface temperature anomalies for a 14-year interval and create an ENSO time line in a case study format. Based on their findings, students determine the recurrence interval of the ENSO system.

This tool provides a summary of daily records broken in several weather parameters (temperature, precipitation, snow fall, snow depth), over various time intervals, in the US and globally.

Pages