In this activity, students download historic temperature datasets and then graph and compare with different locations. As an extension, students can download and examine data sets for other sites to compare the variability of changes at different distinct locations, and it is at this stage where learning can be individualized and very meaningful.

This is a multi-media teaching tool to learn about climate change. The tool is comprised of stills, video clips, graphic representations, and explanatory text about climate science. Acclaimed photographer James Balog and his Extreme Ice team put this teaching tool together.

This is an activity designed to allow students who have been exposed to the El NiÃo-Southern Oscillation to analyze the La NiÃa mechanism and predict its outcomes in a case study format.

This video discusses impacts that the Eastern US is experiencing due to climate change. It describes the seasonal shifts that may affect tourism in New England, extreme heat in the Southeast, how rising sea level affects coastal areas, changes in hurricane intensity, the spread of invasive species and disease, as well as other topics.

Students explore the increase in atmospheric carbon dioxide over the past 40 years with an interactive online model. They use the model and observations to estimate present emission rates and emission growth rates. The model is then used to estimate future levels of carbon dioxide using different future emission scenarios. These different scenarios are then linked by students to climate model predictions also used by the Intergovernmental Panel on Climate Change.

This high-resolution narrated video shows levels and movements of CO2 globally through the course of a year.

In this activity, students consider Greenland reflectivity changes from 2000 to 2012 and what albedo anomalies may indicate about how the Greenland ice sheet is changing in a case study format.

This video describes the joint NASA-JAXA GPM (Global Precipitation Measurement) satellite mission and why it is necessary for monitoring precipitation around the Earth. It also discusses the science around issues of having too much or too little precipitation such as landslides and drought. It emphasizes the need for data to fill in gaps, and why data and being able to predict natural disasters is so valuable.

In this audio slideshow, an ecologist from the University of Florida describes the radiocarbon dating technique that scientists use to determine the amount of carbon within the permafrost of the Arctic tundra. Understanding the rate of carbon released as permafrost thaws is necessary to understand how this positive feedback mechanism is contributing to climate change that may further increase global surface temperatures.

These graphs show carbon dioxide measurements at the Mauna Loa Observatory, Hawaii. The graphs display recent measurements as well as historical long term measurements. The related website summarizes in graphs the recent monthly CO2, the full CO2 Record, the annual Mean CO2 Growth Rate, and gives links to detailed CO2 data for this location, which is one of the most important CO2 tracking sites in the world.