C-ROADS is a simplified version of a climate simulator. Its primary purpose is to help users understand the long-term climate effects (CO2 concentrations, global temperature, sea level rise) of various customized actions to reduce fossil fuel CO2 emissions, reduce deforestation, and grow more trees. Students can ask multiple, customized what-if questions and understand why the system reacts as it does.

This video, from Yale Climate Connections, explores the 2014 melting of the West Antarctic ice sheet that captured headlines. Interviews, animations, and news broadcasts explore what the melting meant for both the future of some of the Antarctic glaciers and sea level rise, and informs the viewer how seafloor terrain influences the speed of ice sheet melt.

This is an activity designed to allow students who have been exposed to the El NiÃo-Southern Oscillation to analyze the La NiÃa mechanism and predict its outcomes in a case study format.

In this activity, students download historic temperature datasets and then graph and compare with different locations. As an extension, students can download and examine data sets for other sites to compare the variability of changes at different distinct locations, and it is at this stage where learning can be individualized and very meaningful.

This visualization is a collection of maps, by continent, that project the impact on coastlines of a 216-foot rise in sea level, which is assumed to be the result of melting all the land ice on Earth.

This data viewing tool from NOAA offers nearly instant access to dozens of datasets about Earth through an engaging interface. Users can select data categories from atmosphere, ocean, land, cryosphere, and climate and drill down from there into more detailed categories.

In this activity, students analyze data maps of sea surface temperature anomalies for a 14-year interval and create an ENSO time line in a case study format. Based on their findings, students determine the recurrence interval of the ENSO system.

In this JAVA-based interactive modeling activity, students are introduced to the concepts of mass balance, flow rates, and equilibrium using a simple water bucket model. Students can vary flow rate into the bucket, initial water level in the bucket, and residence time of water in the bucket. After running the model, the bucket's water level as a function of time is presented graphically and in tabular form.

Students gain experience using a spreadsheet and working with others to decide how to conduct their model 'experiments' with the NASA GEEBITT (Global Equilibrium Energy Balance Interactive Tinker Toy). This activity helps students become more familiar with the physical processes that made Earth's early climate so different from that of today. Students also acquire first-hand experience with a limitation in modeling, specifically, parameterization of critical processes.

In this audio slideshow, an ecologist from the University of Florida describes the radiocarbon dating technique that scientists use to determine the amount of carbon within the permafrost of the Arctic tundra. Understanding the rate of carbon released as permafrost thaws is necessary to understand how this positive feedback mechanism is contributing to climate change that may further increase global surface temperatures.

Pages