An activity focusing on black carbon. This activity explores the impacts of the use of wood, dung, and charcoal for fuel, all which generate black carbon, in developing countries.

This Flash-based simulation explores the relationship between carbon emissions and atmospheric carbon dioxide using two main displays: (1) graphs that show the level of human-generated CO2 emissions, CO2 removals, and the level of CO2 in the atmosphere, and (2) a bathtub animation that shows the same information as the graphs. The bathtub simulation illustrates the challenges of reducing greenhouse gas concentrations in the atmosphere.

This video features research conducted at University of Colorado's Institute of Arctic and Alpine Research, which studies isotopes of hydrogen trapped in ice cores to understand climate changes in the past.

This animation depicts real-time wind speed and direction at selected heights above Earth's surface, ocean surface currents, and ocean surface temperatures and anomalies.

In this activity, students download historic temperature datasets and then graph and compare with different locations. As an extension, students can download and examine data sets for other sites to compare the variability of changes at different distinct locations, and it is at this stage where learning can be individualized and very meaningful.

This animated slideshow introduces biodiesel as a fuel alternative. With concern about the use of petroleum-based fuels at an all-time high, biodiesel is experiencing a popularity surge. And algaeâotherwise known to some as pond scumâ are grabbing headlines as the next potential biodiesel superstar. But how and why do algae make oil? And why do they make so much of it? In this audio slide show, U.C. Berkeley's Kris Niyogi describes the process and its potential.

This data viewing tool from NOAA is highly engaging and offers nearly instant access to dozens of datasets about Earth. Users select from atmosphere, ocean, land, cryosphere, and climate, and drill down from there into more detailed categories.

This figure shows the various astronomic cycles that influence long-term global climate cycles (Milankovitch cycles), plotted on the same time scale for easy comparison.

Students explore the increase in atmospheric carbon dioxide over the past 40 years with an interactive online model. They use the model and observations to estimate present emission rates and emission growth rates. The model is then used to estimate future levels of carbon dioxide using different future emission scenarios. These different scenarios are then linked by students to climate model predictions also used by the Intergovernmental Panel on Climate Change.

This Earth Exploration Toolbook chapter is a detailed computer-based exploration in which students learn how various climatic conditions impact the formations of sediment layers on the ocean floor. They analyze sediment core data from the Ross Ice Shelf in Antarctica for evidence of climate changes over time. In addition, they interact with various tools and animations throughout the activity, in particular the Paleontological Stratigraphic Interval Construction and Analysis Tool (PSICAT) that is used to construct a climate change model of a sediment core from core images.

Pages