C-ROADS is a simplified version of a climate simulator. Its primary purpose is to help users understand the long-term climate effects (CO2 concentrations, global temperature, sea level rise) of various customized actions to reduce fossil fuel CO2 emissions, reduce deforestation, and grow more trees. Students can ask multiple, customized what-if questions and understand why the system reacts as it does.

This video production is a part of a four-panel report from the National Academies' America's Climate Choices project. The video maps out the realm of our accumulated knowledge regarding climate change and charts a path forward, urging that research on climate change enter a new era focused on the needs of decision makers.

This resource provides an easy-to-read table summary of solutions to decrease anthropogenic releases of CO2 to the atmosphere. The sources in the data set are clickable for a deeper look into the emission source, references, and a list of additional resources.

This humorous video suggests what might happen if a weather forecaster reported the weather in the context of climate change. There is a sharp contrast between the anchor focusing on short-term local concerns and the weather forecaster describing what is happening on a long-term global basis.

One of a suite of online climate interactive simulations, this Greenhouse Gas Simulator uses the bathtub model to demonstrate how atmospheric concentrations of CO2 will continue to rise unless they are lowered to match the amount of CO2 that can be removed through natural processes.

This animated visualization represents a time history of atmospheric carbon dioxide in parts per million (ppm) from 1979 to 2016, and then back in time to 800,000 years before the present.

The Climate Momentum Simulation allows users to quickly compare the resulting sea level rise, temperature change, atmospheric CO2, and global CO2 emissions from six different policy options projected out to 2100.

This straightforward calculator provides conversions from one unit of energy to the equivalent amount of CO2 emission expected from using that amount.

This video segment from 'Earth: The Operators' Manual' explores how we know that today's increased levels of CO2 are caused by humans burning fossil fuels and not by some natural process, such as volcanic out-gassing. Climate scientist Richard Alley provides a detailed step-by-step explanation that examines the physics and chemistry of different "flavors," or isotopes, of carbon in Earth's atmosphere.

This short video describes the Hestia project - a software tool and data model that provide visualizations of localized CO2 emissions from residential, commercial, and vehicle levels, as well as day versus night comparisons, in the city of Indianapolis.

Pages