This resource consists of an interactive table with a comprehensive list of 29 Greenhouse Gases, their molecular structures, a chart showing a time series of their atmospheric concentrations (at several sampling sites), their global warming potential (GWP) and their atmospheric lifetimes. References are given to the data sets that range from the mid-1990s to 2008.

This video introduces the concept of daylighting - the use of windows or skylights for natural lighting and temperature regulation - and how it is one building strategy that can save operating costs for homeowners and businesses.

This static visualization shows that the global carbon cycle is determined by the interactions of climate, the environment, and Earth's living systems at many levels, from molecular to global.

This is a graphic that illustrates anomalies in tropospheric temperatures over a 50-year time period and is based on 7 different datasets superimposed on each other. It is one of 9 climate indicators documented in the AMS State of the Climate report.

This animated visualization represents a time history of atmospheric carbon dioxide in parts per million (ppm) from 1979 to 2011, and then back in time to 800,000 years before the present.

This is an interactive webtool that allows the user to choose a state or country and both assess how climate has changed over time and project what future changes are predicted to occur in a given area.

The Climate Momentum Simulation allows users to quickly compare the resulting sea level rise, temperature change, atmospheric CO2, and global CO2 emissions from six different policy options: 1) Business As Usual, 2) March 2009 Country Proposals, 3) Flatten CO2 emissions by 2025, 4) 29% below 2009 levels by 2040, 5) 80% reduction of global fossil fuel plus a 90% reduction in land use emissions by 2050, and 6) 95 reduction of CO2 emissions by 2020). Based on the more complex C-ROADS simulator.

This graphic contains ocean heat content (OHC) anomaly trends from 1945 to 2009 for the top 700 meters of the ocean. It is composed of long-term datasets from seven different references. The graphic can be manipulated and downloaded as a picture.

In this audio slideshow, an ecologist from the University of Florida describes the radiocarbon dating technique that scientists use to determine the amount of carbon within the permafrost of the Arctic tundra. Understanding the rate of carbon released as permafrost thaws is necessary to understand how this positive feedback mechanism is contributing to climate change that may further increase global surface temperatures.

This activity introduces students to stratigraphic correlation and the dating of geologic materials, using coastal sediment cores that preserve a record of past hurricane activity.