This video features research conducted at University of Colorado's Institute of Arctic and Alpine Research, which studies isotopes of hydrogen trapped in ice cores to understand climate changes in the past.

This video considers the current estimates of sea level rise as possibly too conservative and discusses more recent data on ice melt rates coming from Antarctica and Greenland, showing rates of melt at up to 5 times as rapid. Scientists discuss what levels and rates of sea level rise have occurred in the past, including the Pliocene, which demonstrated 1m rise every 20 years.

This activity is a research project in which students explore and synthesize key paleoceanographic evidence for the Paleocene-Eocene Thermal Maximum (PETM) as found in marine sediment cores collected and analyzed during Ocean Drilling Program Leg 208 (Walvis Ridge).

An applet about the Milankovitch cycle that relates temperature over the last 400,000 years to changes in the eccentricity, precession, and orbital tilt of Earth's orbit.

This color-coded map displays a progression of changing five-year average global surface temperatures anomalies from 1880 through 2010. The final frame represents global temperature anomalies averaged from 2006 to 2010. The temperature anomalies are computed relative to the base period 1951-1980.

This activity engages learners in examining data pertaining to the disappearing glaciers in Glacier National Park. After calculating percentage change of the number of glaciers from 1850 (150) to 1968 (50) and 2009 (26), students move on to the main glacier-monitoring content of the module--area vs. time data for the Grinnell Glacier, one of 26 glaciers that remain in the park. Using a second-order polynomial (quadratic function) fitted to the data, they extrapolate to estimate when there will be no Grinnell Glacier remaining (illustrating the relevance of the question mark in the title of the module).

In this activity, students create graphs of real temperature data to investigate climate trends by analyzing the global temperature record from 1867 to the present. Long-term trends and shorter-term fluctuations are both evaluated. The data is examined for evidence of the impact of natural and anthropogenic climate forcing mechanisms on the global surface temperature variability. Students are prompted to determine the difficulties scientists face in using this data to make climate predictions.

A collection of repeat photography of glaciers from the National Snow and Ice Data Center (NSIDC). The photos are taken years apart at or near the same location, and at the same time of year. These images illustrate how dramatically glacier positions can change even over a relatively short period in geological time: 60 to 100 years. Background essay and discussion questions are included.

A detailed Google Earth tour of glacier change over the last 50 years introduces this topic in an engaging way. Students are then asked to select from a group of glaciers and create their own Google Earth tour exploring key characteristics and visible changes in that glacier.

This video highlights a variety of climate change research initiatives from scientists at the University of Colorado, Boulder. It describes the changing dynamics of Antarctic ice sheets and the impacts of reduced Arctic sea ice. The video illustrates the excitement of this research through interviews and video clips of scientists in the field.