In this activity, students will use oxygen isotope values of two species of modern coral to reconstruct ambient water temperature over a four-year period. They use Microsoft Excel, or similar application, to create a spreadsheet of temperature values calculated from the isotope values of the corals by means of an algebraic equation. Students then use correlation and regression techniques to determine whether isotope records can be considered to be good proxies for records of past temperatures.

Students consider why the observed atmospheric CO2 increase rate is only ~60% of the CO2 loading rate due to fossil fuel combustion. They develop a box-model to simulate the atmospheric CO2 increase during the industrial era and compare it to the historic observations of atmospheric CO2 concentrations. The model is then used to forecast future concentrations of atmospheric CO2 during the next century.

This lesson explores the chemistry of some of the greenhouse gases that affect Earth's climate. Third in a series of 9 lessons from an online module entitled 'Visualizing and Understanding the Science of Climate Change'.

Students gain experience using a spreadsheet and working with others to decide how to conduct their model 'experiments' with the NASA GEEBITT (Global Equilibrium Energy Balance Interactive Tinker Toy). This activity helps students become more familiar with the physical processes that made Earth's early climate so different from that of today. Students also acquire first-hand experience with a limitation in modeling, specifically, parameterization of critical processes.

This interactive visualization from the NASA Earth Observatory website compares Arctic sea ice minimum extent from 1984 to that of 2012.

This activity describes the flow of carbon in the environment and focuses on how much carbon is stored in trees. It goes on to have students analyze data and make calculations about the amount of carbon stored in a set of trees at three sites in a wooded area that were to be cut down to build a college dormitory.

In this activity for undergraduate students, learners build a highly simplified computer model of thermohaline circulation in the North Atlantic Ocean and conduct a set of simulation experiments to understand the complex dynamics inherent in this simple model.

This short video describes the Hestia project - a software tool and data model that provide visualizations of localized CO2 emissions from residential, commercial, and vehicle levels, as well as day versus night comparisons, in the city of Indianapolis.

This short cartoon video uses a simple baseball analogy (steroid use increases probability of hitting home runs) to explain how small increases in greenhouse gases can cause global temperature changes and increase the probability of extreme weather events.

An activity focusing on black carbon. This activity explores the impacts of the use of black carbon generating wood, dung, and charcoal for fuel in developing countries.