This static image from NOAA's Pacific Marine Environmental Laboratory Carbon Program offers a visually compelling and scientifically sound image of the sea water carbonate chemistry process that leads to ocean acidification and impedes calcification.

This set of activities is about carbon sources, sinks, and fluxes among them - both with and without anthropogenic components.

This is a figure from the 2007 IPCC Assessment Report 4 on atmospheric concentrations of carbon dioxide, methane and nitrous oxide over the last 10,000 years (large panels) and since 1750 (inset panels).

In this short video, atmospheric scientist Scott Denning gives a candid and entertaining explanation of how greenhouse gases in Earth's atmosphere warm our planet.

This Flash-based simulation explores the relationship between carbon emissions and atmospheric carbon dioxide using two main displays: (1) graphs that show the level of human-generated CO2 emissions, CO2 removals, and the level of CO2 in the atmosphere, and (2) a bathtub animation that shows the same information as the graphs. The bathtub simulation illustrates the challenges of reducing greenhouse gas concentrations in the atmosphere.

This NASA video provides a nice overview of Earth's water cycle from the perspective of looking at Earth from space.

This is an interactive table with a comprehensive list of 29 greenhouse gases, their molecular structures, a chart showing a time series of their atmospheric concentrations (at several sampling sites), their global warming potential (GWP) and their atmospheric lifetimes. References are given to the data sets that range from the mid-1990s to 2008.

In this role-playing activity, learners are presented with a scenario in which they determine whether the Gulf Stream is responsible for keeping northern Europe warm. They must also address the potential future of the Gulf Stream if polar ice were to continue melting. The students work in small groups to identify the issue, discuss the problem, and develop a problem statement. They are then asked what they need to know to solve the problem.

This lesson explores the chemistry of some of the gases that affect Earth's climate. It is the 3rd in a series of 9 lessons from an online module entitled 'Visualizing and Understanding the Science of Climate Change'.

In this audio slideshow, an ecologist from the University of Florida describes the radiocarbon dating technique that scientists use to determine the amount of carbon within the permafrost of the Arctic tundra. Understanding the rate of carbon released as permafrost thaws is necessary to understand how this positive feedback mechanism is contributing to climate change that may further increase global surface temperatures.