This interactive world map shows the impact of a global temperature rise of 4 degrees Celsius on a variety of factors including agriculture, marine life, fires, weather patterns, and health. Hot Spots can be clicked on to get more specific information about the problems in different regions.

This set of animations and interactive simulations from the Byrd Polar Research Center at Ohio State University helps students develop an understanding of models used to understand the Earth system. Students consider the types of data that need to be included in a climate model, looking at inputs, outputs, and variables. The animations show how data is calculated for grid cells and assembled into a comprehensive model.

This animation allows students to explore the infrared spectra of greenhouse gases and depict the absorption spectra. Vibrational modes and Earth's energy spectrum can also be overlaid.

This animation depicts global surface warming as simulated by NCAR's Community Climate System Model (CCSM) Version 3. It shows the temperature anomalies relative to the end of the 19th century, both over the entire globe and as a global average. The model shows the temporary cooling effects during 5 major volcanic eruptions and estimates future temperature trends based on different amounts of greenhouse gas emissions.

Bell Telephone Science Hour produced this video in 1958, explaining how the production of CO2 from factories and automobiles is causing the atmosphere to warm, melting the polar ice caps, and causing the sea level to rise.

This visualization shows the molecular interaction of infrared radiation with various gases in the atmosphere. Focus is on the interaction with C02 molecules and resultant warming of the troposphere.

This video discusses two key signs of global change in the Southern Ocean: changes in Antarctic bottom water and ocean acidification.

This short cartoon video uses a simple baseball analogy (steroid use increases probability of hitting home runs) to explain how small increases in greenhouse gases can cause global temperature changes and increase the probability of extreme weather events.

This is a polar map of permafrost extent in the Northern Hemisphere. A sidebar explains how permafrost, as it forms and later thaws, serves as both a sink and source for carbon to the atmosphere. Related multimedia is a slideshow of permafrost scientists from U. of Alaska, Fairbanks, collecting permafrost data in the field.

This video describes why tropical ice cores are important and provide different information than polar ice cores, why getting them now is important (they are disappearing), and how scientists get them. The work of glaciologist Lonnie Thompson is featured, with a focus on his work collecting cores of ice from high mountain glaciers that contain significant data about past climate change.

Pages