This series of activities introduces students to the technologies of batteries and fuel cells. Activities include a mix of lectures, demonstrations, and lab activities.

This activity from NOAA Earth System Research Laboratory introduces students to the scientific understanding of the greenhouse effect and the carbon cycle. The activity leads them through several interactive tasks to investigate recent trends in atmospheric carbon dioxide. Students analyze scientific data and use scientific reasoning to determine the causes responsible for these recent trends. By studying carbon cycle science in a visual and interactive manner, students can learn firsthand about the reasons behind our changing climate.

In this short activity, students or groups are tasked to make concept sketches that track the source of electrical power as far back as they can conceive. The concept sketches reveal students' prior conceptions of the power grid and energy mix, and lead naturally into a lesson or discussion about energy resources and power production.

In this activity students learn how Earth's energy balance is regulating climate. This activity is lesson 4 in the nine-lesson module Visualizing and Understanding the Science of Climate Change.

This resource is a website that is a self-contained, multi-part introduction to how climate models work. The materials include videos and animations about understanding, constructing and applying climate models.

In this JAVA-based interactive modeling activity, students are introduced to the concepts of mass balance, flow rates, and equilibrium using a simple water bucket model. Students can vary flow rate into the bucket, initial water level in the bucket, and residence time of water in the bucket. After running the model, the bucket's water level as a function of time is presented graphically and in tabular form.

This activity challenges students to try and meet the world's projected energy demand over the next century, decade by decade, by manipulating a menu of available energy sources in the online Energy lab simulator all while keeping atmospheric CO2 under a target 550ppm.

In this activity, students download historic temperature datasets and then graph and compare with different locations. As an extension, students can download and examine data sets for other sites to compare the variability of changes at different distinct locations, and it is at this stage where learning can be individualized and very meaningful.

In this hands-on activity, students examine how the orientation of a photovoltaic (PV) panel -- relative to the position of the sun -- affects the energy-efficiency of the panel.

This Motions of the Sun Lab is an interactive applet from the University of Nebraska-Lincoln Astronomy Applet project.

Pages