In this activity students make biodiesel from waste vegetable oil and develop a presentation based on their lab experience. Parts of the activity include creation of bio-diesel from clean vegetable oil, creation of bio-diesel from waste vegetable oil, chemical analysis of biodiesel, purification of biodiesel, and creation of soap from glycerin.

Students conduct a greenhouse gas emission inventory for their college or university as a required part of the American College and University Presidents Climate Commitment.

This activity focuses on reconstructing the Paleocene-Eocene Thermal Maximum (PETM) as an example of a relatively abrupt global warming period. Students access Integrated Ocean Drilling Program (IODP) sediment core data with Virtual Ocean software in order to display relevant marine sediments and their biostratigraphy.

In this activity, students explore whether statements made by the news and media on climate change-related issues are actually true. Examples are provided for Antarctic sea ice and hurricane intensity, but the activity could be extended to other topics as well.

In this activity, learners use the STELLA box modeling software to determine Earth's temperature based on incoming solar radiation and outgoing terrestrial radiation. Starting with a simple black body model, the exercise gradually adds complexity by incorporating albedo, then a 1-layer atmosphere, then a 2-layer atmosphere, and finally a complex atmosphere with latent and sensible heat fluxes. With each step, students compare the modeled surface temperature to Earth's actual surface temperature, thereby providing a check on how well each increasingly complex model captures the physics of the actual system.

In this activity, students will learn the difference between sea ice and glaciers in relation to sea level rise. They will create and explore topographic maps as a means of studying sea level rise and how it will affect Alaska's coastline.

This Earth Exploration Toolbook chapter is a detailed computer-based exploration in which students learn how various climatic conditions impact the formations of sediment layers on the ocean floor. They analyze sediment core data from the Ross Ice Shelf in Antarctica for evidence of climate changes over time. In addition, they interact with various tools and animations throughout the activity, in particular the Paleontological Stratigraphic Interval Construction and Analysis Tool (PSICAT) that is used to construct a climate change model of a sediment core from core images.

Students consider why the observed atmospheric CO2 increase rate is only ~60% of the CO2 loading rate due to fossil fuel combustion. They develop a box-model to simulate the atmospheric CO2 increase during the industrial era and compare it to the historic observations of atmospheric CO2 concentrations. The model is then used to forecast future concentrations of atmospheric CO2 during the next century.

In this activity, students assume the role of a team of architects that has been commissioned to build a solar house containing both active and passive solar components. First, they must design the house and then build a model. The model is tested to determine how well it utilizes solar energy.

In this learning activity, students use a web-based geologic timeline to examine temperature, CO2 concentration, and ice cover data to investigate how climate has changed during the last 715 million years.

Pages