In this short video, host Dr. Ryan interviews graduate student Amy Steiker at the Institute of Arctic and Alpine Research about her research, using isotopes of nitrous oxide, connecting human activity to greenhouse gas emissions.

This short cartoon video uses a simple baseball analogy (steroid use increases probability of hitting home runs) to explain how small increases in greenhouse gases can cause global temperature changes and increase the probability of extreme weather events.

This video highlights the Pentagon's focus on climate change as the military examines potential risks, strategic responses, and impacts of climate change on future military and humanitarian missions. In 2010, for the first time, the Pentagon focused on climate change as a significant factor in its Quadrennial Defense Review of potential risks and strategic responses. Rear Admiral David Titley, Oceanographer of the Navy, explains why the US military sees clear evidence of climate change and how those changes will affect future military and humanitarian missions.

This NASA animation presents the levels of atmospheric carbon dioxide over the last 400,000 years, last 1000 years and last 25 years at different time scales. The data come from the Lake Vostok ice cores (400,000 BC to about 4000 BC), Law Dome ice cores (1010 AD to 1975 AD) and Mauna Loa observations (1980 to 2005).

Hands-on laboratory activity that allows students to investigate the effects of distance and angle on the input of solar radiation at Earth's surface, the role played by albedo, the heat capacity of land and water, and how these cause the seasons. Students predict radiative heating based on simple geometry and experiment to test their hypotheses.

In this activity, students compare carbon dioxide data from Mauna Loa Observatory, Barrow, Alaska, and the South Pole over the past 40 years. Students use the data to learn about what causes short-term and long-term changes in atmospheric carbon dioxide. This activity makes extensive use of Excel.

This activity involves plotting and comparing monthly data on atmospheric C02 concentrations over two years, as recorded in Mauna Loa and the South Pole, and postulating reasons for differences in their seasonal patterns. Longer-term data is then examined for both sites to see if seasonal variations from one site to the other carry over into longer term trends.

This video features University of Wisconsin-Madison researcher John Magnuson, who studies the ecology of freshwater systems. He explains the difference between weather and climate using data on ice cover from Lake Mendota in Madison, WI. Analysis of the data indicates a long-term trend that can be connected to climate change.

These graphs show carbon dioxide measurements at the Mauna Loa Observatory, Hawaii. The graphs display recent measurements as well as historical long term measurements. The related website summarizes in graphs the recent monthly CO2, the full CO2 Record, the annual Mean CO2 Growth Rate, and gives links to detailed CO2 data for this location, which is one of the most important CO2 tracking sites in the world.

The Climate Momentum Simulation allows users to quickly compare the resulting sea level rise, temperature change, atmospheric CO2, and global CO2 emissions from six different policy options projected out to 2100.