In this activity for undergraduate students, learners build a highly simplified computer model of thermohaline circulation in the North Atlantic Ocean and conduct a set of simulation experiments to understand the complex dynamics inherent in this simple model.

In this role-playing activity, learners are presented with a scenario in which they determine whether the Gulf Stream is responsible for keeping northern Europe warm. They must also address the potential future of the Gulf Stream if polar ice were to continue melting. The students work in small groups to identify the issue, discuss the problem, and develop a problem statement. They are then asked what they need to know to solve the problem.

This set of activities is about carbon sources, sinks, and fluxes among them - both with and without anthropogenic components.

In this activity, students compare countries and nation states with high- and low-energy consumption rates within a specific region of the world. Students are encouraged to draw linkages between a country's energy culture and its position in multilateral climate negotiations.

In this activity, students use Google Earth and information from several websites to investigate some of the consequences of climate change in polar regions, including the shrinking of the ice cap at the North Pole, disintegration of ice shelves, melting of Greenland, opening of shipping routes, effects on polar bears, and possible secondary effects on climate in other regions due to changes in ocean currents. Students learn to use satellite and aerial imagery, maps, graphs, and statistics to interpret trends accompanying changes in the Earth system.

In this activity, students engage in a simulation of the international negotiation process in order to convey how the international community is responding to climate change. Participants learn firsthand about the interests of different countries and the range of policy responses to mitigate future climate change.

This lesson explores the chemistry of some of the greenhouse gases that affect Earth's climate. Third in a series of 9 lessons from an online module entitled 'Visualizing and Understanding the Science of Climate Change'.

This activity explores how the topic of climate change is represented in various forms of writing, from scholarly articles to opinion pieces and works of fiction. While the content does not emphasize climate science itself, it instead allows students to focus on how the science is being portrayed.

This activity focuses on reconstructing the Paleocene-Eocene Thermal Maximum (PETM) as an example of a relatively abrupt global warming period. Students access Integrated Ocean Drilling Program (IODP) sediment core data with Virtual Ocean software in order to display relevant marine sediments and their biostratigraphy.

The purpose of this activity is to identify global patterns and connections in environmental data contained in the GLOBE Earth Systems Poster, to connect observations made within the Earth Systems Poster to data and information at the National Snow and Ice Data Center, and to understand the connections between solar energy and changes at the poles, including feedback related to albedo.

Pages