This article and slide show from the New York Times, features several scientists from the University of Alaska, Fairbanks, who study the effects of thawing permafrost in Alaska.

This activity includes a set of slides with embedded images, animations, and interactives that students use to investigate extreme weather events. This is module 8 of a Satellite Meteorology course.

Our Coast, Our Future (OCOF) is a collaborative, user-driven project focused on providing coastal California resource managers and land use planners locally relevant, online maps and tools to help understand, visualize, and anticipate vulnerabilities to sea level rise and storms.

A collection of repeat photography of glaciers from the National Snow and Ice Data Center (NSIDC). The photos are taken years apart at or near the same location, and at the same time of year. These images illustrate how dramatically glacier positions can change even over a relatively short period in geological time: 60 to 100 years. Background essay and discussion questions are included.

This data viewing tool from NOAA offers nearly instant access to dozens of datasets about Earth through an engaging interface. Users can select data categories from atmosphere, ocean, land, cryosphere, and climate and drill down from there into more detailed categories.

This is a full color, worldwide, animated weather map using GIS interface showing current and projected wind and other weather conditions for any location in the world. Data can be viewed at different spatial scales.

This animated visualization represents a time history of atmospheric carbon dioxide in parts per million (ppm) from 1979 to 2016, and then back in time to 800,000 years before the present.

This interactive displays how climate variables are changing over time (temperature, CO2, Arctic sea ice, sun's energy, sea level, etc.) in graphical form. Students can easily examine over 50+ years of archived data.

Global Forest Watch is an interactive, online forest monitoring and alert system that provides users globally with the information they need to better manage and conserve forest landscapes.

C-ROADS is a simplified version of a climate simulator. Its primary purpose is to help users understand the long-term climate effects (CO2 concentrations, global temperature, sea level rise) of various customized actions to reduce fossil fuel CO2 emissions, reduce deforestation, and grow more trees. Students can ask multiple, customized what-if questions and understand why the system reacts as it does.

Pages