This audio slideshow examines the changes in the ecosystem that will occur to the Arctic due to increasing temperatures and disappearing sea ice.

In this activity, students use a spreadsheet to calculate the net carbon sequestration in a set of trees; they will utilize an allometric approach based upon parameters measured on the individual trees. They determine the species of trees in the set, measure trunk diameter at a particular height, and use the spreadsheet to calculate carbon content of the tree using forestry research data.

In this video, a team of paleontologists, paleobotanists, soil scientists, and other researchers take to the field in Wyoming's Bighorn Basin to document how the climate, plants, and animals there changed during the Paleocene- Eocene Thermal Maximum (PETM). During this time a sudden, enormous influx of carbon flooded the ocean and atmosphere for reasons that are still unclear to scientists. The PETM is used as an analog to the current warming. The scientists' research may help inform our understanding of current increases in carbon in the atmosphere and ocean and the resulting impact on ecosystems.

This video focuses on the conifer forest in Alaska to explore the carbon cycle and how the forest responds to rising atmospheric carbon dioxide. Topics addressed in the video include wildfires, reflectivity, and the role of permafrost in the global carbon cycle.

This video features the Prairie Heating and CO2 Enrichment Experiment near Cheyenne WY, where scientists expose mixed-grass prairie to higher temperatures and CO2 concentrations to study impacts on the prairie for late in this century.

This series of activities is designed to introduce students to the role of sediments and sedimentary rocks in the global carbon cycle. Students learn how stable carbon isotopes can be used to reconstruct ancient sedimentary environments. Students will make some simple calculations, formulate hypotheses, and think about the implications of their results. The activity includes an optional demonstration of the density separation of a sediment sample into a light, organic fraction and a heavier, mineral fraction.

In this video from the Polaris Project Website, American and Siberian university students describe their research on permafrost.

This video highlights a team of scientists who work on reconstructing the mass extinction that occurred 250 million years ago, the end of the Permian Period. This event wiped out the majority of life on our planet, resetting the evolution of life. Clues suggest that deadly bacteria might have set off a chemical chain reaction that poisoned the Permian seas and atmosphere.

This static visualization shows that the global carbon cycle is determined by the interactions of climate, the environment, and Earth's living systems at many levels, from molecular to global.

This article and slide show from the New York Times, features several scientists from the University of Alaska, Fairbanks, who study the effects of thawing permafrost in Alaska.

Pages