This series of visualizations show the annual Arctic sea ice minimum from 1979 to 2010. The decrease in Arctic sea ice over time is shown in an animation and a graph plotted simultaneously, but can be parsed so that the change in sea ice area can be shown without the graph.

In this video, a PhD Student from the University of Maine explains how ice cores are used to study global climate change.

For this lesson, the guiding Concept Question is: What is climate change and how does climate relate to greenhouse gas concentrations over time? This activity is the second lesson in a nine-lesson module 'Visualizing and Understanding the Science of Climate Change' produced by the International Year of Chemistry project (2011).

This set of animations and interactive simulations from the Byrd Polar Research Center at Ohio State University helps students develop an understanding of models used to understand the Earth System. Students consider the types of data that need to be included in a climate model, looking at inputs and outputs as well as variables, such as land surface, and how to measure changes of different parts of Earth's surface over time.

This lesson sequence guides students to learn about the geography and the unique characteristics of the Arctic, including vegetation, and people who live there. Students use Google Earth to explore the Arctic and learn about meteorological observations in the Arctic, including collecting their own data in hands-on experiments. This is the first part of a three-part curriculum about Arctic climate.

This video profiles glaciologist Lonnie Thompson and his research into tropical mountain glaciers as a way to understand climate history. Beginning in the 1970s, Thompson recognized that tropical ice cores contain information relating to tropical climate phenomena, including El NiÃo events and monsoons. These phenomena are not archived in ice from polar regions. Thompson explains that his archive of ice cores is full of clues that, taken together with records collected from around the world, can help scientists create a timeline that tells Earth's climate story.

This short video describes how the compression of Antarctic snow into ice captures air from past atmospheres. It shows how ice cores are drilled from the Antarctic ice and prepared for shipment and subsequent analysis.

This is an animated interactive simulation that illustrates differential solar heating on a surface in full sunlight versus in the shade.

C-Learn is a simplified version of the C-ROADS simulator. Its primary purpose is to help users understand the long-term climate effects (CO2 concentrations, global temperature, sea level rise) of various customized actions to reduce fossil fuel CO2 emissions, reduce deforestation, and grow more trees. Students can ask multiple, customized what-if questions and understand why the system reacts as it does.

In this activity, students estimate the drop in sea level during glacial maxima, when ice and snow in high latitudes and altitudes resulted in lower sea levels. Students estimate the surface area of the world's oceans, use ice volume data to approximate how much sea levels dropped, and determine the sea-level rise that would occur if the remaining ice melted.

Pages