This interactive visualization depicts sea surface temperatures (SST) and SST anomalies from 1885 to 2007. Learn all about SST and why SST data are highly valuable to ocean and atmospheric scientists. Understand the difference between what actual SST readings can reveal about local weather conditions and how variations from normalâcalled anomaliesâcan help scientists identify warming and cooling trends and make predictions about the effects of global climate change. Discover the relationships between SST and marine life, sea ice formation, local and global weather events, and sea level.

In this video, students see how data from the ice core record is used to help scientists predict the future of our climate. Video features ice cores extracted from the WAIS Divide, a research station on the West Antarctic Ice Sheet.

This video documents how scientists, using marine algae, can study climate change in the past to help understand potential effects of climate change in the future.

This video features research conducted at University of Colorado's Institute of Arctic and Alpine Research, which studies isotopes of hydrogen trapped in ice cores to understand climate changes in the past.

In this video from the Polaris Project Website, American and Siberian university students participating in the project describe their research on permafrost.

This color-coded map displays a progression of changing five-year average global surface temperatures anomalies from 1880 through 2010. The final frame represents global temperature anomalies averaged from 2006 to 2010. The temperature anomalies are computed relative to the base period 1951-1980.

This video explains how scientists construct computer-generated climate models to forecast weather, understand climate, and project climate change. It discusses how different types of climate models can be used and how scientists use computers to build these models.

This video highlights a team of scientists who work on reconstructing the mass extinction that occurred 250 million years ago, the end of the Permian Period, and wiped out the majority of life on our planet, resetting the evolution of life. Clues suggest that deadly bacteria might have set off a chemical chain reaction that poisoned the Permian seas and atmosphere.

This video examines the thawing of permafrost due to changes in climate and shows examples of the impacts that warming temperatures have on permafrost in the Arctic, including the release of the greenhouse gas methane. Dramatic results are shown, including sink holes forming on the landscape and beneath buildings, roads, and other infrastructure, causing some communities to relocate.

This activity includes a set of slides with embedded images, animations, and interactives that students use to investigate extreme weather events. This is module 8 of a Satellite Meteorology course.