This interactive map allows students to experiment with decadal average temperature projections. Overall temperatures are expected to rise throughout the century and this tool demonstrates those projected measurements.

This series of activities is designed to introduce students to the role of sediments and sedimentary rocks in the global carbon cycle. Students learn how stable carbon isotopes can be used to reconstruct ancient sedimentary environments. Students will make some simple calculations, formulate hypotheses, and think about the implications of their results. The activity includes an optional demonstration of the density separation of a sediment sample into a light, organic fraction and a heavier, mineral fraction.

This video documents how scientists, using marine algae, can study climate change in the past to help understand potential effects of climate change in the future.

This interactive visualization depicts sea surface temperatures (SST) and SST anomalies from 1885 to 2007. Learn all about SST and why SST data are highly valuable to ocean and atmospheric scientists. Understand the difference between what actual SST readings can reveal about local weather conditions and how variations from normalâcalled anomaliesâcan help scientists identify warming and cooling trends and make predictions about the effects of global climate change. Discover the relationships between SST and marine life, sea ice formation, local and global weather events, and sea level.

In this activity, students work with climate data from the tropical Pacific Ocean to understand how sea-surface temperature and atmospheric pressure affect precipitation in the tropical Pacific in a case study format.

This National Weather Service interactive visualization includes outlook maps for different types weather predictions. The map includes temperature and precipitation predictions for up to 3 months out, as well as predictions for tropical hazards, weather hazards, and drought. Further data is easily accessed.

In this activity for undergraduates, students explore the CLIMAP (Climate: Long-Range Investigation, Mapping and Prediction) model results for differences between the modern and the Last Glacial Maximum (LGM) and discover the how climate and vegetation may have changed in different regions of the Earth based on scientific data.

This simulation allows the user to project CO2 sources and sinks by adjusting the points on a graph and then running the simulation to see projections for the impact on atmospheric CO2 and global temperatures.

This video features research conducted at University of Colorado's Institute of Arctic and Alpine Research, which studies isotopes of hydrogen trapped in ice cores to understand climate changes in the past.

In this activity, students graph and analyze methane data, extracted from an ice core, to examine how atmospheric methane has changed over the past 109,000 years in a case study format. Calculating the rate of change of modern methane concentrations, they compare the radiative forcing of methane and carbon dioxide and make predictions about the future, based on what they have learned from the data and man's role in that future.