This short video, adapted from NOVA, explains how Earth's position relative to the Sun might be responsible for the dramatic shift in the climate of what is now the Saharan nation of Djibouti.

This simulation allows the user to project CO2 sources and sinks by adjusting the points on a graph and then running the simulation to see projections for the impact on atmospheric CO2 and global temperatures.

Video and animations of sea level from NASA's Climate website. Since 1992, NASA and CNES have studied sea surface topography as a proxy for ocean temperatures. NASA Missions TOPEX/Poseidon, Jason 1 and Jason 2 have been useful in predicting major climate, weather, and geologic events including El Nino, La Nina, Hurricane Katrina, and the Indian Ocean Tsunami.

This three-panel figure is an infographic showing how carbon and oxygen isotope ratios, temperature, and carbonate sediments have changed during the Palaeocene-Eocene Thermal Maximum. The figure caption provides sources to scientific articles from which this data was derived. A graphic visualization from the Intergovernmental Panel on Climate Change shows the rapid decrease in carbon isotope ratios that is indicative of a large increase in the atmospheric greenhouse gases CO2 and CH4, which was coincident with approximately 5C of global warming.

This set of activities is about carbon sources, sinks, and fluxes among them - both with and without anthropogenic components.

This short video describes how the compression of Antarctic snow into ice captures air from past atmospheres. It shows how ice cores are drilled from the Antarctic ice and prepared for shipment and subsequent analysis.

This activity is a research project in which students explore and synthesize key paleoceanographic evidence for the Paleocene-Eocene Thermal Maximum (PETM) as found in marine sediment cores collected and analyzed during Ocean Drilling Program Leg 208 (Walvis Ridge).

This is a jigsaw activity in which students are assigned to research one step out of five in the geochemical process stages of the organic carbon cycle. Students then teach their step in cross-step groups until everyone understands all five process stages.

This article and slide show from the New York Times, features several scientists from the University of Alaska, Fairbanks, who study the effects of thawing permafrost in Alaska.

This Earth Exploration Toolbook chapter is a detailed computer-based exploration in which students learn how various climatic conditions impact the formations of sediment layers on the ocean floor. They analyze sediment core data from the Ross Ice Shelf in Antarctica for evidence of climate changes over time. In addition, they interact with various tools and animations throughout the activity, in particular the Paleontological Stratigraphic Interval Construction and Analysis Tool (PSICAT) that is used to construct a climate change model of a sediment core from core images.