This is a polar map of permafrost extent in the Northern Hemisphere. A sidebar explains how permafrost, as it forms and later thaws, serves as both a sink and source for carbon to the atmosphere. Related multimedia is a slideshow of permafrost scientists from U. of Alaska, Fairbanks, collecting permafrost data in the field.

This is a photo essay linked to a New York Times story about climate-related stressors on forests -- including mountain pine beetles, forest fires, forest clearance, and ice storms -- and the importance of protecting forests as an important carbon sink.

A video from the Extreme Ice Survey in which Dr. Tad Pfeffer and photographer Jim Balog discuss the dynamics of the Columbia glacier's retreat in recent years through this time-lapse movie. Key point: glacier size is being reduced not just by glacial melting but due to a shift in glacial dynamics brought on by climate change.

This short cartoon video uses a simple baseball analogy (steroid use increases probability of hitting home runs) to explain how small increases in greenhouse gases can cause global temperature changes and increase the probability of extreme weather events.

This is an interactive table with a comprehensive list of 29 greenhouse gases, their molecular structures, a chart showing a time series of their atmospheric concentrations (at several sampling sites), their global warming potential (GWP) and their atmospheric lifetimes. References are given to the data sets that range from the mid-1990s to 2008.

This video addresses two ways in which black carbon contributes to global warming. When in the atmosphere, it absorbs sunlight and generates heat, warming the air. When deposited on snow and ice, black carbon changes the albedo of the surface. The video is effective in communicating about a problem frequently underrepresented in discussions of climate change and also public health.

This animated visualization was created for the planetarium film 'Dynamic Earth'. It illustrates the trail of energy that flows from atmospheric wind currents to ocean currents.

This static graph of changes in CO2 concentrations goes back 400,000 years, showing the dramatic spike in recent years.

In this video, a PhD Student from the University of Maine explains how ice cores are used to study global climate change.

This article and slide show from the New York Times, features several scientists from the University of Alaska, Fairbanks, who study the effects of thawing permafrost in Alaska.

Pages