An interactive simulation of Earth's seasonal dynamics that includes the axial tilt and other aspects of Earth's annual cycle.

This is part of a larger lab from the University of Nebraska at Lincoln: http://astro.unl.edu/naap/motion1/motion1.html

An applet about the Milankovitch cycle that relates temperature over the last 400,000 years to changes in the eccentricity, precession, and orbital tilt of Earth's orbit.

This animated video outlines Earth's energy. The video presents a progression from identifying the different energy systems to the differences between external and internal energy sources and how that energy is cycled and used.

This activity has students examine the misconception that there is no scientific consensus on climate change. Students explore temperature data and report their conclusions to the class. Then students examine techniques of science denial and examine a claim about scientific consensus.

This is the first of nine lessons in the Visualizing and Understanding the Science of Climate Change website. This lesson is an introduction to Earth's climate and covers key principles regarding Earth's unique climate, atmosphere, and regional and temporal climate differences.

This visualization graphically displays temperature and CO2 concentration in the atmosphere as derived from ice core data from 400,000 years ago to 1950. The data originates from UNEP GRID Arendal's graphic library of CO2 levels from Vostok ice core.

These animations depict the three major Milankovitch Cycles that impact global climate, visually demonstrating the definitions of eccentricity, obliquity, and precession, and their ranges of variation and timing on Earth.

In this 6-part activity, students learn about climate change during the Cenozoic and the abrupt changes at the Cretaceous/Paleogene boundary (65.5 million years ago), the Eocene/Oligocene boundary (33.9 million years ago), and the Paleocene/Eocene boundary (55.8 million years ago).

Climate has varied in the past, but today's climate change rate is much more drastic due to human activity. Students explore past climate cycle graphs and compare the cycles with the current rate of change.

This interactive activity, in applet form, guides students through the motion of the sun and how they relate to seasons.

Pages