In this activity, students investigate how scientists monitor changes in Earth's glaciers, ice caps, and ice sheets. The activity is linked to 2009 PBS Nova program entitled Extreme Ice.

This 3-activity sequence addresses the question: 'To what extent should coastal communities build or rebuild?' The activity uses social science and geoscience data to prepare an evidence-based response to the question, in targeted US coastal communities.

In this activity, students research various topics about ocean health, e.g. overfishing, habitat destruction, invasive species, climate change, pollution, and ocean acidification. An optional extension activity has them creating an aquatic biosphere in a bottle experiment in which they can manipulate variables.

This activity in a case study format explores ice loss from the Greenland ice sheet by way of outlet glaciers that flow into the ocean. Students do basic calculations and learn about data trends, rates of change, uncertainty, and predictions.

Using real data from NASA's GRACE satellites, students will track water mass changes in the U.S., data that measures changes in ice, surface and especially groundwater. The background information includes an animated video about where water exists and how it moves around Earth, as well as short video clips to introduce the GRACE mission and explain how satellites collect data. Students will estimate water resources using heat-map data, create a line graph for a specific location, then assess trends and discuss implications.

This activity illustrates the importance of water resources and how changes in climate are closely linked to changes in water resources. The activity could fit into many parts of a science curriculum, for example a unit on water could be connected to climate change.

In this exercise learners use statistics (T-test using Excel) to analyze an authentic dataset from Lake Mendota in Madison, WI that spans the last 150 years to explore ice on/ice off dates. In addition, students are asked to investigate the IPCC Likelihood Scale and apply it to their statistical results.

In this activity, students examine global climate model output and consider the potential impact of global warming on tropical cyclone initiation and evolution. As a follow-up, students read two short articles on the connection between hurricanes and global warming and discuss these articles in context of what they have learned from model output.

In this activity, students estimate the drop in sea level during glacial maxima, when ice and snow in high latitudes and altitudes resulted in lower sea levels. Students estimate the surface area of the world's oceans, use ice volume data to approximate how much sea levels dropped, and determine the sea-level rise that would occur if the remaining ice melted.

In this activity, students conduct a short hands-on demonstration that simulates ocean acidification resulting from excess atmospheric carbon dioxide and discuss potential implications of increases in ocean temperatures and acidification due to climate change.

This activity allows students to make El Nino in a container, but it might work better as a teacher demonstration. The introduction and information provided describe El Nino, its processes and its effects on weather elsewhere in the world.

Pages