This simulation allows the user to project CO2 sources and sinks by adjusting the points on a graph and then running the simulation to see projections for the impact on atmospheric CO2 and global temperatures.

Students consider why the observed atmospheric CO2 increase rate is only ~60% of the CO2 loading rate due to fossil fuel combustion. They develop a box-model to simulate the atmospheric CO2 increase during the industrial era and compare it to the historic observations of atmospheric CO2 concentrations. The model is then used to forecast future concentrations of atmospheric CO2 during the next century.

This animated visualization represents a time history of atmospheric carbon dioxide in parts per million (ppm) from 1979 to 2016, and then back in time to 800,000 years before the present.

In this lesson, students examine and interpret varied observational datasets and are asked to determine whether the data supports or does not support the statement: climate change is occurring in Colorado.

This is a video overview of the history of climate science, with the goal of debunking the idea that in the 1970s, climate scientists were predicting global cooling.

A video from the Extreme Ice Survey in which Dr. Tad Pfeffer and photographer Jim Balog discuss the dynamics of the Columbia glacier's retreat in recent years through this time-lapse movie. Key point: glacier size is being reduced not just by glacial melting but due to a shift in glacial dynamics brought on by climate change.

This activity explores the urban heat island effect. Students access student-collected surface temperature data provided through the GLOBE program and analyze the data with My World GIS.

This is a simulation that illustrates how temperature will be affected by global CO2 emission trajectories. It addresses the issue that even if global emissions begin to decrease, the atmospheric concentration of CO2 will continue to increase, resulting in increased global temperatures.

In this activity, students chart temperature changes over time in Antarctica's paleoclimate history by reading rock cores. Students use their data to create an interactive display illustrating how Antarctica's climate timeline can be interpreted from ANDRILL rock cores.

This is a collection of five short videos that show how climate change is affecting fishing, native populations and access for the oil and gas industry in the Arctic. The videos include personal reflections by writers Andrew C. Revkin and Simon Romero, scientists, and residents about their experience of the impacts of the climate change in the Arctic.

Pages