This module contains five activities, in increasing complexity, that focus on understanding how to interpret and manipulate sea level data, using real data from NOAA.

Students first need to understand how to access and interpret sea surface height and tide data. To understand how to interpret these data, students will review and practice computing mean values. Along the way, they will learn how different factors, such as storms, affect tide levels and how to measure them. The goal is for students to become experienced with these kinds of data and the tools for accessing them so that, by the end of the module, they can continue to explore data sets driven by their own inquiry.

This activity uses two interactive simulations to illustrate climate change, 1) at the micro/molecular level - modeling the impact of increasing concentrations of greenhouse gases in the atmosphere on surface temperature and 2) at the macro level - modeling changes in glacier thickness and flow as a result of rising surface temperature.

In this activity, students explore the web-based U.S. Forest Service Climate Change Atlas to learn about projected climate changes in their state and how suitable habitat for tree and bird species is projected to change by 2100.

This video provides a good introduction to the field of attribution science. Beginning with an introduction to weather and climate, it describes how severe weather might be linked to climate change and the science behind attribution studies. It gives a good explanation behind how scientists use climate models to study whether severe weather events were influenced by climate change. It also discusses the question, "does climate change cause extreme weather?" and provides an introduction to the concepts of probability, causation, and correlation in regards to attribution science (how much climate change influenced an event verses normal variations in weather).

C-ROADS is a simplified version of a climate simulator. Its primary purpose is to help users understand the long-term climate effects (CO2 concentrations, global temperature, sea level rise) of various customized actions to reduce fossil fuel CO2 emissions, reduce deforestation, and grow more trees. Students can ask multiple, customized what-if questions and understand why the system reacts as it does.

This visualization provides an informative summary of the quarterly seasonal global weather and climate using the 3-D Science on a Sphere format. These video summaries use animations of recent NOAA data and an engaging commentary to review the climate highlights of the past 4 seasons. Topics include, El Nino/La Nina, temperature trends, extreme weather, and emerging climate research.

This interactive map allows students to experiment with decadal average temperature projections. Overall temperatures are expected to rise throughout the century and this tool demonstrates those projected measurements.

Resource Watch features hundreds of data sets all in one place on the state of the planet's resources and citizens. Users can visualize challenges facing people and the planet, from climate change to poverty, water risk to state instability, air pollution to human migration.

In this short video segment Native Americans talk about climate change and how it impacts their lives as they experience unexpected changes in environmental conditions. They describe observed changes in seasonality, how these changes affect ecosystems and habitats, their respect for Mother Earth, and the participation of tribal colleges in climate change research projects.

This PBS Learning Media activity addresses drought basics, including its causes and impacts and ways to assess it, by using media from NOAA and NASA. It defines the types of drought, the impacts, monitoring, and responses to drought. Use this resource to stimulate thinking and questions on the complexity of drought and to identify some variables used in defining drought.

Pages