In this activity, students will use oxygen isotope values of two species of modern coral to reconstruct ambient water temperature over a four-year period. They use Microsoft Excel, or similar application, to create a spreadsheet of temperature values calculated from the isotope values of the corals by means of an algebraic equation. Students then use correlation and regression techniques to determine whether isotope records can be considered to be good proxies for records of past temperatures.

This set of activities is about carbon sources, sinks, and fluxes among them - both with and without anthropogenic components.

This activity with a lab report instructs students to solve and plot 160,000 years' worth of ice core data from the Vostok ice core using Excel or similar spreadsheets to analyze data. Students learn about ice cores and what they can tell us about past atmospheric conditions and the past atmospheric concentrations of CO2 and CH4.

This lesson explores El NiÃo by looking at sea surface temperature, sea surface height, and wind vectors in order to seek out any correlations there may be among these three variables using the My NASA Data Live Access Server. The lesson guides the students through data representing the strong El NiÃo from 1997 to 1998. In this way, students will model the methods of researchers who bring their expertise to study integrated science questions.

Students explore the increase in atmospheric carbon dioxide over the past 40 years with an interactive online model. They use the model and observations to estimate present emission rates and emission growth rates. The model is then used to estimate future levels of carbon dioxide using different future emission scenarios. These different scenarios are then linked by students to climate model predictions also used by the Intergovernmental Panel on Climate Change.

In this activity, students analyze data maps of sea surface temperature anomalies for a 14-year interval and create an ENSO time line in a case study format. Based on their findings, students determine the recurrence interval of the ENSO system.

In this activity, students use the GLOBE Student Data Archive and visualizations to explore changes in regional and seasonal temperature patterns.

In this activity, students work with climate data from the tropical Pacific Ocean to understand how sea-surface temperature and atmospheric pressure affect precipitation in the tropical Pacific in a case study format.

In this activity, students work in groups, plotting carbon dioxide concentrations over time on overheads and estimating the rate of change over five years. Stacked together, the overheads for the whole class show an increase on carbon dioxide over five years and annual variation driven by photosynthesis. This exercise enables students to practice basic quantitative skills and understand how important sampling intervals can be when studying changes over time. A goal is to see how small sample size may give incomplete picture of data.

This is an activity designed to allow students who have been exposed to the El NiÃo-Southern Oscillation to analyze the La NiÃa mechanism and predict its outcomes in a case study format.

Pages