This article and slide show from the New York Times, features several scientists from the University of Alaska, Fairbanks, who study the effects of thawing permafrost in Alaska.

This video is the second of a three-video series in the Sea Change project, which follows the work of Dr. Maureen Raymo, paleogeologist at Columbia University's Lamont-Doherty Earth Observatory, who travels with fellow researchers to Australia in search of evidence of sea level that was once higher than it is today.

This set of activities is about carbon sources, sinks, and fluxes among them - both with and without anthropogenic components.

This video documents how scientists, using marine algae, can study climate change in the past to help understand potential effects of climate change in the future.

This activity with a lab report instructs students to solve and plot 160,000 years' worth of ice core data from the Vostok ice core using Excel or similar spreadsheets to analyze data. Students learn about ice cores and what they can tell us about past atmospheric conditions and the past atmospheric concentrations of CO2 and CH4.

In this short video from ClimateCentral, host Jessica Harrop explains what evidence scientists have for claiming that recent global warming is caused by humans and is not just part of a natural cycle.

This is a simulation that illustrates how temperature will be affected by global CO2 emission trajectories. It addresses the issue that even if global emissions begin to decrease, the atmospheric concentration of CO2 will continue to increase, resulting in increased global temperatures.

In this video, Michael Mann and Peter Ramsdorf explore some of the information from the 2013 IPCC 5th report in light of public perceptions of climate science.

This activity focuses on reconstructing the Paleocene-Eocene Thermal Maximum (PETM) as an example of a relatively abrupt global warming period. Students access Integrated Ocean Drilling Program (IODP) sediment core data with Virtual Ocean software in order to display relevant marine sediments and their biostratigraphy.

This NASA animation of the Five-Year Average Global Temperature Anomalies from 1881 to 2009 shows how temperature anomalies have varied in the last 130 years. The color-coded map displays a long-term progression of changing global surface temperatures from 1881 to 2009. Dark red indicates the greatest warming and dark blue indicates the greatest cooling.

Pages