In this activity, students analyze data maps of sea surface temperature anomalies for a 14-year interval and create an ENSO time line in a case study format. Based on their findings, students determine the recurrence interval of the ENSO system.

This site provides a useful set of graphical representations of mean temperature change in different land/ocean surfaces over the past 120+ years.

In this activity, students work with climate data from the tropical Pacific Ocean to understand how sea-surface temperature and atmospheric pressure affect precipitation in the tropical Pacific in a case study format.

This is a series of graphical animations that compare the contribution of natural factors (including orbital changes, variability in the sun's temperature, volcanic action, deforestation, ozone pollution levels, and aerosols) to the contribution of increasing atmospheric carbon dioxide, to increases in global atmospheric temperature... in a visual and concise way.

This animated visualization represents a time history of atmospheric carbon dioxide in parts per million (ppm) from 1979 to 2016, and then back in time to 800,000 years before the present.

This is an activity designed to allow students who have been exposed to the El NiÃo-Southern Oscillation to analyze the La NiÃa mechanism and predict its outcomes in a case study format.

This is a video overview of the history of climate science, with the goal of debunking the idea that in the 1970s, climate scientists were predicting global cooling.

In this activity, students examine climate variability in the North Atlantic associated with the North Atlantic Oscillation (NOA) in a case study format.

This activity with a lab report instructs students to solve and plot 160,000 years' worth of ice core data from the Vostok ice core using Excel or similar spreadsheets to analyze data. Students learn about ice cores and what they can tell us about past atmospheric conditions and the past atmospheric concentrations of CO2 and CH4.

In this 6-part activity, students learn about climate change during the Cenozoic and the abrupt changes at the Cretaceous/Paleogene boundary (65.5 million years ago), the Eocene/Oligocene boundary (33.9 million years ago), and the Paleocene/Eocene boundary (55.8 million years ago).

Pages