This interactive visualization from the NASA Earth Observatory website compares Arctic sea ice minimum extent from 1984 to that of 2012.

In this 6-part activity, students learn about climate change during the Cenozoic and the abrupt changes at the Cretaceous/Paleogene boundary (65.5 million years ago), the Eocene/Oligocene boundary (33.9 million years ago), and the Paleocene/Eocene boundary (55.8 million years ago).

A video from the Extreme Ice Survey in which Dr. Tad Pfeffer and photographer Jim Balog discuss the dynamics of the Columbia glacier's retreat in recent years through this time-lapse movie. Key point: glacier size is being reduced not just by glacial melting but due to a shift in glacial dynamics brought on by climate change.

The Greenland 2014: Follow the Water video is about Greenland's ice sheet, accompanied by computer models of the same, to show how the ice is melting, where the meltwater is going, and what it is doing both on the surface and beneath the ice.

This three-panel figure is an infographic showing how carbon and oxygen isotope ratios, temperature, and carbonate sediments have changed during the Palaeocene-Eocene Thermal Maximum. The figure caption provides sources to scientific articles from which this data was derived. A graphic visualization from the Intergovernmental Panel on Climate Change shows the rapid decrease in carbon isotope ratios that is indicative of a large increase in the atmospheric greenhouse gases CO2 and CH4, which was coincident with approximately 5C of global warming.

This video documents how scientists, using marine algae, can study climate change in the past to help understand potential effects of climate change in the future.

In this video segment, a team of scientists seeks evidence to support their hypothesis that atmospheric warming may cause water to form beneath the West Antarctic ice sheet. This water causes ice streams to flow much more quickly than the rest of the ice sheet, which has important implications for sea level rise.

In this activity, students examine the effects of hurricanes on sea surface temperature using NASA data. They examine authentic sea surface temperature data to explore how hurricanes extract heat energy from the ocean surface.

In this video, a PhD Student from the University of Maine explains how ice cores are used to study global climate change.

This is a collection of five short videos that show how climate change is affecting fishing, native populations and access for the oil and gas industry in the Arctic. The videos include personal reflections by writers Andrew C. Revkin and Simon Romero, scientists, and residents about their experience of the impacts of the climate change in the Arctic.

Pages