This series of activities is designed to introduce students to the role of sediments and sedimentary rocks in the global carbon cycle. Students learn how stable carbon isotopes can be used to reconstruct ancient sedimentary environments. Students will make some simple calculations, formulate hypotheses, and think about the implications of their results. The activity includes an optional demonstration of the density separation of a sediment sample into a light, organic fraction and a heavier, mineral fraction.

This video is accompanied by supporting materials including background essay and discussion questions. The focus is on changes happening to permafrost in the Arctic landscape, with Alaska Native peoples and Western scientists discussing both the causes of thawing and its impact on the ecosystem. The video shows the consequences of erosion, including mudslides and inland lakes being drained of water. An Inuit expresses his uncertainty about the ultimate effect this will have on his community and culture.

This NASA video discusses the impacts of the sun's energy, Earth's reflectance, and greenhouse gases on the Earth System.

Through learning activities, students learn how weather over a long period of time describes climate, explore how sea level rise can affect coastal communities and environments, and describe how humans are contributing to climate change and how we can take action to solve this problem.

This narrated slide show gives a brief overview of coral biology and how coral reefs are in danger from pollution, ocean temperature change, ocean acidification, and climate change. In addition, scientists discuss how taking cores from corals yields information on past changes in ocean temperature.

This article and slide show from the New York Times, features several scientists from the University of Alaska, Fairbanks, who study the effects of thawing permafrost in Alaska.

This lesson sequence guides students to learn about the geography and the unique characteristics of the Arctic, including vegetation, and people who live there. Students use Google Earth to explore the Arctic and learn about meteorological observations in the Arctic, including collecting their own data in hands-on experiments. This is the first part of a three-part curriculum about Arctic climate.

This collection of learning activities allows students to explore phenology, phenological changes over time, and how these changes fit into the larger context of climate change. Students explore patterns of solar radiation and seasons as well as phenological cycles and ecological affects of these patterns.

This video features Katharine Hayhoe presenting a lively discussion of impacts that the Midwestern US is experiencing due to climate change. It steps through evidence for how climate change is affecting agriculture, tourism, drought and flood, water cycles and freshwater availability, the spread of invasive species and disease, as well as other topics.

In this activity, students calculate temperatures during a time in the geologic record when rapid warming occurred using a well known method called 'leaf-margin analysis.' Students determine the percentage of the species that have leaves with smooth edges, as opposed to toothed, or jagged, edges. Facsimiles of fossil leaves from two collection sites are examined, categorized, and the data is plugged into an equation to provide an estimate of paleotemperature for two sites in the Bighorn Basin. It also introduces students to a Smithsonian scientist who worked on the excavation sites and did the analysis.