A short video on the causes of ocean acidification and its effects on marine ecosystems.

This video features Katharine Hayhoe presenting a lively discussion of impacts that the Midwestern US is experiencing due to climate change. It steps through evidence for how climate change is affecting agriculture, tourism, drought and flood, water cycles and freshwater availability, the spread of invasive species and disease, as well as other topics.

This simulation allows the user to project CO2 sources and sinks by adjusting the points on a graph and then running the simulation to see projections for the impact on atmospheric CO2 and global temperatures.

C-ROADS is a simplified version of a climate simulator. Its primary purpose is to help users understand the long-term climate effects (CO2 concentrations, global temperature, sea level rise) of various customized actions to reduce fossil fuel CO2 emissions, reduce deforestation, and grow more trees. Students can ask multiple, customized what-if questions and understand why the system reacts as it does.

This is a video overview of the history of climate science, with the goal of debunking the idea that in the 1970s, climate scientists were predicting global cooling.

This visualization is a website with an interactive calculator that allows for estimation of greenhouse gas production from croplands in the United States.

This graphic indicator describes trends in average surface temperature for the United States and the world.

This video reviews the benefits and drawbacks associated with growing corn to make ethanol.

This is a collection of five short videos that show how climate change is affecting fishing, native populations and access for the oil and gas industry in the Arctic. The videos include personal reflections by writers Andrew C. Revkin and Simon Romero, scientists, and residents about their experience of the impacts of the climate change in the Arctic.

One of a suite of online climate interactive simulations, this Greenhouse Gas Simulator uses the bathtub model to demonstrate how atmospheric concentrations of CO2 will continue to rise unless they are lowered to match the amount of CO2 that can be removed through natural processes.

Pages