This board game, designed for middle school students, introduces the concepts of energy use in our lives and the real impact that personal choices can have on our energy consumption, energy bills, and fuel supply.

In this activity students make biodiesel from waste vegetable oil and develop a presentation based on their lab experience. Parts of the activity include creation of bio-diesel from clean vegetable oil, creation of bio-diesel from waste vegetable oil, chemical analysis of biodiesel, purification of biodiesel, and creation of soap from glycerin.

Through learning activities, students learn how weather over a long period of time describes climate, explore how sea level rise can affect coastal communities and environments, and describe how humans are contributing to climate change and how we can take action to solve this problem.

In this activity, students explore past examples of climate variability in three locations: the Peruvian and Bolivian Andes, Central America, and coastal Greenland, and consider differences between climate variability and climate change.

This learning activity explores the concept of resiliency. It allows students to make city planning decisions and then employs a game to test their resilience decisions against potential impacts from severe weather, climate change, and natural hazards.

In this activity, students use Google Earth to investigate a variety of renewable energy sources and select sites within the United States that would be appropriate for projects based on those sources.

This activity challenges students to try and meet the world's projected energy demand over the next century, decade by decade, by manipulating a menu of available energy sources in the online Energy lab simulator all while keeping atmospheric CO2 under a target 550ppm.

This is a laboratory activity in which students will compare the amount of carbon dioxide in four different sources of gas and determine the carbon dioxide contribution from automobiles. They test ambient air, human exhalation, automobile exhaust, and nearly pure carbon dioxide from a vinegar/baking soda mixture.

In this activity, students work through the process of evaluating the feasibility of photovoltaic solar power in 4 different US cities.

Students investigate passive solar building design with a focus on heating. Insulation, window placement, thermal mass, surface colors, and site orientation are addressed in the background materials and design preparation. Students test their projects for thermal gains and losses during a simulated day and night then compare designs with other teams for suggestions for improvements.

Pages