This straightforward calculator provides conversions from one unit of energy to the equivalent amount of CO2 emission expected from using that amount.

This visualization is a website with an interactive calculator that allows for estimation of greenhouse gas production from croplands in the United States.

One of a suite of online climate interactive simulations, this Greenhouse Gas Simulator uses the bathtub model to demonstrate how atmospheric concentrations of CO2 will continue to rise unless they are lowered to match the amount of CO2 that can be removed through natural processes.

Students conduct a greenhouse gas emission inventory for their college or university as a required part of the American College and University Presidents Climate Commitment.

This simulation allows the user to project CO2 sources and sinks by adjusting the points on a graph and then running the simulation to see projections for the impact on atmospheric CO2 and global temperatures.

This is a multi-step activity that helps students measure, investigate, and understand the increase in atmospheric CO2 and the utility of carbon offsets. It also enables students to understand that carbon offsets, through reforestation, are not sufficient to balance increases in atmospheric C02 concentration.

This game is an expansion on the popular board game Catan, it adapts the regular Catan game to become a game about sustainability and climate change. It's a neat idea, but teachers must already own the game and know how to play it.

This game-based learning would be great for after-school activities, environmental clubs, or a 'free' period in school. The amount of setup needed to get the game going and explain the rules may be too involved for regular classroom use.

Students analyze complex real-world problems by specifying qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants. This place-based activity discusses multiple strategies to reduce carbon emissions, and realistic paths to preventing climate change.

C-ROADS is a simplified version of a climate simulator. Its primary purpose is to help users understand the long-term climate effects (CO2 concentrations, global temperature, sea level rise) of various customized actions to reduce fossil fuel CO2 emissions, reduce deforestation, and grow more trees. Students can ask multiple, customized what-if questions and understand why the system reacts as it does.

This activity describes the flow of carbon in the environment and focuses on how much carbon is stored in trees. It goes on to have students analyze data and make calculations about the amount of carbon stored in a set of trees at three sites in a wooded area that were to be cut down to build a college dormitory.

Pages