In this activity, students explore the way that human activities have changed the way that carbon is distributed in Earth's atmosphere, lithosphere, biosphere and hydrosphere.

This learning activity is a climate change musical for K-12, youth groups or faith organizations. Shine weaves together climate science and performance art into a fun and powerful story, which spans 300 million years of geological time to convey how humanity, energy, and climate are interrelated.

This lesson explores the chemistry of some of the greenhouse gases that affect Earth's climate. Third in a series of 9 lessons from an online module entitled 'Visualizing and Understanding the Science of Climate Change'.

This learning activity explores the concept of resiliency. It allows students to make city planning decisions and then employs a game to test their resilience decisions against potential impacts from severe weather, climate change, and natural hazards.

In this lab activity, students use a chemical indicator (bromothymol blue) to detect the presence of carbon dioxide in animal and plant respiration and in the burning of fossil fuels and its absence in the products of plant photosynthesis. After completing the five parts of this activity, students compare the colors of the chemical indicator in each part and interpret the results in terms of the qualitative importance of carbon sinks and sources.

This simulation provides scenarios for exploring the principles of climate dynamics from a multi-disciplinary perspective. Interconnections among climate issues, public stakeholders, and the governance spheres are investigated through creative simulations designed to help students understand international climate change negotiations.

This learning activity that asks students to consider the impacts of different types of electricity generation on wildlife. Students are asked some questions about their beliefs and knowledge on the topic, and then read a summary of a life cycle assessment of wildlife impacts for electricity generation via coal, nuclear power, hydropower, and wind power. Students are asked to rank the energy sources from least to most harmful impact on wildlife, and reflect on their rankings.

In this Earth Exploration Toolbook chapter, students select, explore, and analyze satellite imagery. They do so in the context of a case study of the origins of atmospheric carbon monoxide and aerosols, tiny solid airborne particles such as smoke from forest fires and dust from desert wind storms. They use the software tool ImageJ to animate a year of monthly images of aerosol data and then compare the animation to one created for monthly images of carbon monoxide data. Students select, explore, and analyze satellite imagery using NASA Earth Observatory (NEO) satellite data and NEO Image Composite Explorer (ICE) tool to investigate seasonal and geographic patterns and variations in concentration of CO and aerosols in the atmosphere.

This is a laboratory activity in which students will compare the amount of carbon dioxide in four different sources of gas and determine the carbon dioxide contribution from automobiles. They test ambient air, human exhalation, automobile exhaust, and nearly pure carbon dioxide from a vinegar/baking soda mixture.

In this activity, students learn about the scientific evidence supporting climate change, use this information to evaluate and improve conclusions some people might draw about climate change, and participate in a role-play to negotiate solutions to climate change.

Pages