In this activity, students compare countries and nation states with high- and low-energy consumption rates within a specific region of the world. Students are encouraged to draw linkages between a country's energy culture and its position in multilateral climate negotiations.

In this activity, students will determine the environmental effects of existing cars and a fleet consisting of their dream cars. They compute how many tons of heat-trapping gases are produced each year, how much it costs to fuel the cars, and related information. Then, students research and prepare a report about greener transportation choices.

In this activity, students engage in a simulation of the international negotiation process in order to convey how the international community is responding to climate change. Participants learn firsthand about the interests of different countries and the range of policy responses to mitigate future climate change.

In this activity, students explore real data about renewable energy potential in their state using a mapping tool developed by NREL (National Renewable Energy Laboratory) to investigate the best locations for wind energy, solar energy, hydropower, geothermal energy, and biomass.

This activity explores how the topic of climate change is represented in various forms of writing, from scholarly articles to opinion pieces and works of fiction. While the content does not emphasize climate science itself, it instead allows students to focus on how the science is being portrayed.

In this role-play activity, students take the roles of various important players in the climate change policy negotiation including politicians, scientists, environmentalists, and industry representatives. Working in these roles, students must take a position, debate with others, and then vote on legislation designed to reduce greenhouse gas emissions in the United States. Can be used in a variety of courses including writing and rhetoric, and social sciences.

This lab exercise is designed to provide a basic understanding of a real-world scientific investigation. Learners are introduced to the concept of tropospheric ozone as an air pollutant due to human activities and burning of fossil fuels. Students analyze and visualize data to investigate this air pollution and climate change problem, determine the season in which it commonly occurs, and communicate the results.

In this activity, students use climate data to develop a simple graph of how climate has changed over time and then present the result in a blog, emphasizing effective science communication.

This is a hands-on activity students design, build, and test. They compare the energy-generating capacities of vertical- and horizontal- axis wind turbine prototypes they have built as potential sources for power in a home.

This 3-activity sequence addresses the question: "To what extent should coastal communities build or rebuild?" The activity uses social science and geoscience data to prepare an evidence-based response to the question, in targeted US coastal communities.