Through this set of lessons, students learn about the impacts of water shortages due to drought, make connections to climate patterns, and explore community resiliency solutions. The lessons engage students in evaluating solutions for a particular case study community. Students will need to do additional research on solutions, but by the end of the lesson, students will be able to articulate how drought, although a localized problem, has far-reaching impacts, and to suggest solutions to a problem that is projected to intensify as the climate continues to change.

This collection of learning activities allows students to explore phenology, phenological changes over time, and how these changes fit into the larger context of climate change. Students explore patterns of solar radiation and seasons as well as phenological cycles and ecological affects of these patterns.

In this activity, students use Google Earth and team up with fictional students in Chersky, Russia to investigate possible causes of thawing permafrost in Siberia and other Arctic regions. Students explore the nature of permafrost and what the effects of thawing permafrost mean both locally and globally. Next, students use a spreadsheet to explore soil temperature data from permafrost boreholes and surface air temperature datasets from in and around the Chersky region for a 50-year time span.

Students use long term sea-level rise data set to create models and compare short-term trends to long-term trends. They then determine whether sea-level rise is occurring based on the data.

In this activity, students research changes to the environment in the Arctic/Bering Sea over time using oral and photographic histories. Developed for Alaska Native students, this activity can be customized for other regions.

This learning activity is a climate change musical for K-12, youth groups or faith organizations. Shine weaves together climate science and performance art into a fun and powerful story, which spans 300 million years of geological time to convey how humanity, energy, and climate are interrelated.

In this activity, students learn about sea ice extent in both polar regions (Arctic and Antarctic). They start out by forming a hypothesis on the variability of sea ice, testing the hypothesis by graphing real data from a recent 3-year period to learn about seasonal variations and over a 25-year period to learn about longer-term trends, and finish with a discussion of their results and predictions.

This activity relates water temperature to fishery health within inland freshwater watersheds as a way to explore how environmental factors of an ecosystem affect the organisms that use those ecosystems as important habitat.

In this activity, students learn about the urban heat island effect by investigating which areas of their schoolyard have higher temperatures - trees, grass, asphalt, and other materials. Based on their results, they hypothesize how concentrations of surfaces that absorb heat might affect the temperature in cities - the urban heat island effect. Then they analyze data about the history of Los Angeles heat waves and look for patterns in the Los Angeles climate data and explore patterns.

This activity allows students to make El Nino in a container, but it might work better as a teacher demonstration. The introduction and information provided describe El Nino, its processes and its effects on weather elsewhere in the world.