In this activity, students learn about the urban heat island effect by investigating which areas of their schoolyard have higher temperatures - trees, grass, asphalt, and other materials. Based on their results, they hypothesize how concentrations of surfaces that absorb heat might affect the temperature in cities - the urban heat island effect. Then they analyze data about the history of Los Angeles heat waves and look for patterns in the Los Angeles climate data and explore patterns.

In this activity, students work with climate data from the tropical Pacific Ocean to understand how sea-surface temperature and atmospheric pressure affect precipitation in the tropical Pacific in a case study format.

This National Weather Service interactive visualization includes outlook maps for different types weather predictions. The map includes temperature and precipitation predictions for up to 3 months out, as well as predictions for tropical hazards, weather hazards, and drought. Further data is easily accessed.

In this activity, students examine climate variability in the North Atlantic associated with the North Atlantic Oscillation (NOA) in a case study format.

In this activity, students are guided through the process of locating and graphing web-based environmental data that has been collected by GLOBE Program participants using actual data collected by students in Pennsylvania and comparing them to their local climatic boundary conditions. This activity highlights the opportunities for using GLOBE data to introduce basic concepts of Earth system science.

This easy-to-understand video animation describes drought and explains the different categories of drought used by the drought monitor. It discusses the effects of and contributions to drought, what the implications of the different drought levels are, and puts the drought maps into context to understand how the impacts vary geographically (e.g. drought in Nevada vs Kansas - one could affect tourism, the other agriculture). It also touches on how the development of maps/drought severity is determined and how it might vary geographically. The animation provides a basic overview of statistics and percentiles and the concept of '100 year events.'

This is an interactive website that provides descriptive information and data related to ten key climate indicators. These climate indicators and related resources show global patterns and data that are intuitive and compelling teaching tools.

This online quiz tests knowledge about climate change, its impacts, how we know about earth's climate, and potential solutions.

In this intermediate Excel activity, students import US Historical Climate Network mean temperature data into Excel from a station of their choice. They are then guided through the activity on how to use Excel for statistical calculations, graphing, and linear trend estimates. The activity assumes some familiarity with Excel and graphing in Excel.

This video provides a good introduction to the field of attribution science. Beginning with an introduction to weather and climate, it describes how severe weather might be linked to climate change and the science behind attribution studies. It gives a good explanation behind how scientists use climate models to study whether severe weather events were influenced by climate change. It also discusses the question, "does climate change cause extreme weather?" and provides an introduction to the concepts of probability, causation, and correlation in regards to attribution science (how much climate change influenced an event verses normal variations in weather).

Pages