In this activity, students analyze data maps of sea surface temperature anomalies for a 14-year interval and create an ENSO time line in a case study format. Based on their findings, students determine the recurrence interval of the ENSO system.

This is an interactive table with a comprehensive list of 29 greenhouse gases, their molecular structures, a chart showing a time series of their atmospheric concentrations (at several sampling sites), their global warming potential (GWP) and their atmospheric lifetimes. References are given to the data sets that range from the mid-1990s to 2008.

The Greenland 2014: Follow the Water video is about Greenland's ice sheet, accompanied by computer models of the same, to show how the ice is melting, where the meltwater is going, and what it is doing both on the surface and beneath the ice.

In this activity, students work in groups, plotting carbon dioxide concentrations over time on overheads and estimating the rate of change over five years. Stacked together, the overheads for the whole class show an increase on carbon dioxide over five years and annual variation driven by photosynthesis. This exercise enables students to practice basic quantitative skills and understand how important sampling intervals can be when studying changes over time. A goal is to see how small sample size may give incomplete picture of data.

This static image from NOAA's Pacific Marine Environmental Laboratory Carbon Program offers a visually compelling and scientifically sound image of the sea water carbonate chemistry process that leads to ocean acidification and impedes calcification.

A video from the Extreme Ice Survey in which Dr. Tad Pfeffer and photographer Jim Balog discuss the dynamics of the Columbia glacier's retreat in recent years through this time-lapse movie. Key point: glacier size is being reduced not just by glacial melting but due to a shift in glacial dynamics brought on by climate change.

In this activity, students investigate soil erosion and how a changing climate could influence erosion rates in agricultural areas. This activity is part of a larger InTeGrate module called Growing Concern.

In this activity, students work with climate data from the tropical Pacific Ocean to understand how sea-surface temperature and atmospheric pressure affect precipitation in the tropical Pacific in a case study format.

In this video, a PhD Student from the University of Maine explains how ice cores are used to study global climate change.

This video documents how scientists, using marine algae, can study climate change in the past to help understand potential effects of climate change in the future.