This video looks at the impact of changing climate on animal habitats around the world, showing how different creatures are responding to changing temperatures and precipitation patterns.

Students consider why the observed atmospheric CO2 increase rate is only ~60% of the CO2 loading rate due to fossil fuel combustion. They develop a box-model to simulate the atmospheric CO2 increase during the industrial era and compare it to the historic observations of atmospheric CO2 concentrations. The model is then used to forecast future concentrations of atmospheric CO2 during the next century.

In this series of activities students investigate the effects of black carbon on snow and ice melt in the Arctic. The lesson begins with an activity that introduces students to the concept of thermal energy and how light and dark surfaces reflect and absorb radiant energy differently. To help quantify the relationship between carbon
and ice melt, the wet lab activity has students create ice samples both with and without black carbon and then compare how they respond to radiant energy while considering implications for the Arctic.

The video addresses impact of warming temperatures on major lakes of the world with specific focus on Lake Superior and Lake Tanganyika. It discusses the science of water stratification and its impact on lake ecosystems and on human populations whose livelihoods depend on the lakes.

In this lesson, students examine and interpret varied observational datasets and are asked to determine whether the data supports or does not support the statement: climate change is occurring in Colorado.

Two short, narrated animations about carbon dioxide and Earth's temperature are presented on this webpage. The first animation shows the rise in atmospheric CO2 levels, human carbon emissions, and global temperature rise of the past 1,000 years; the second shows changes in the level of CO2 from 800,000 years ago to the present.

In this activity, students use datasets from both the Northern and Southern hemispheres to observe seasonal and hemispheric differences in changes to atmospheric C02 release and uptake over time.

This short video describes the Hestia project - a software tool and data model that provide visualizations of localized CO2 emissions from residential, commercial, and vehicle levels, as well as day versus night comparisons, in the city of Indianapolis.

In this video, Michael Mann and Peter Ramsdorf explore some of the information from the 2013 IPCC 5th report in light of public perceptions of climate science.

This interactive visualization allows users to compare projections of Wisconsin's average annual temperature with the actual changes of the last five decades. Text on the web page encourages students to think about the challenges Wisconsin could face if these changes occur.