In this activity, students research various topics about ocean health, e.g. overfishing, habitat destruction, invasive species, climate change, pollution, and ocean acidification. An optional extension activity has them creating an aquatic biosphere in a bottle experiment in which they can manipulate variables.

This video describes what black carbon is, where is comes from, and how it contributes to sea ice melt and global warming.

This is a simulation that illustrates how temperature will be affected by global CO2 emission trajectories. It addresses the issue that even if global emissions begin to decrease, the atmospheric concentration of CO2 will continue to increase, resulting in increased global temperatures.

This lesson covers different aspects of the major greenhouse gases - water vapor, carbon dioxide, methane, nitrous oxides and CFCs - including some of the ways in which human activities are affecting the atmospheric concentrations of these key greenhouse gases. This is lesson six in a nine-lesson module about climate change.

This is a collection of five short videos - The Arctic Ice Cap, Sampling the Ice, Arctic Fisheries, Natives Feel Effect and Arctic Energy -- that can be played separately or in sequence. They show how climate change is affecting fishing, native populations and access for the oil and gas industry in the Arctic. The videos include personal reflections by writers Andrew C. Revkin and Simon Romero , scientists and residents about their experience of the impacts of the climate change in the Arctic.

This is a teaching activity in which students learn about the connection between CO2 emissionS, CO2 concentration, and average global temperatures. Through a simple online model, students learn about the relationship between these and learn about climate modeling while predicting temperature change over the 21st century.

This NASA video discusses the impacts of the sun's energy, Earth's reflectance and greenhouse gases on the Earth System.

In this activity, students explore the way that human activities have changed the way that carbon is distributed in Earth's atmosphere, lithosphere, biosphere and hydrosphere.

In this visualization students can explore North American fossil fuel CO2 emissions at very fine space and time scales. The data is provided by the Vulcan emissions data project, a NASA/DOE funded effort under the North American Carbon Program (NACP).

In this series of activities students investigate the effects of black carbon on snow and ice melt in the Arctic. The lesson begins with an activity that introduces students to the concept of thermal energy and how light and dark surfaces reflect and absorb radiant energy differently. To help quantify the relationship between carbon
and ice melt, the wet lab activity has students create ice samples both with and without black carbon and then compare how they respond to radiant energy while considering implications for the Arctic.